Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals (2402.09474v2)

Published 12 Feb 2024 in eess.SP, cs.AI, cs.CV, and cs.LG

Abstract: Remote patient monitoring based on wearable single-lead electrocardiogram (ECG) devices has significant potential for enabling the early detection of heart disease, especially in combination with AI approaches for automated heart disease detection. There have been prior studies applying AI approaches based on deep learning for heart disease detection. However, these models are yet to be widely accepted as a reliable aid for clinical diagnostics, in part due to the current black-box perception surrounding many AI algorithms. In particular, there is a need to identify the key features of the ECG signal that contribute toward making an accurate diagnosis, thereby enhancing the interpretability of the model. In the present study, we develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data. A residual network (ResNet) approach is also developed for comparison with the vision transformer approach. These models are applied to the Chapman-Shaoxing dataset to classify atrial fibrillation, as well as another common arrhythmia, sinus bradycardia, and normal sinus rhythm heartbeats. The models enable the identification of the key regions of the heartbeat that determine the resulting classification, and highlight the importance of P-waves and T-waves, as well as heartbeat duration and signal amplitude, in distinguishing normal sinus rhythm from atrial fibrillation and sinus bradycardia.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. R. Gopinathannair, L. Y. Chen, M. K. Chung, W. K. Cornwell et al., “Managing atrial fibrillation in patients with heart failure and reduced ejection fraction: A scientific statement from the American Heart Association,” Circulation: Arrhythmia and Electrophysiology, vol. 14, no. 7, 07 2021.
  2. M. K. Chung, L. L. Eckhardt, L. Y. Chen, H. M. Ahmed et al., “Lifestyle and risk factor modification for reduction of atrial fibrillation: A scientific statement from the American Heart Association,” Circulation, vol. 141, no. 16, 04 2020.
  3. Z. I. Attia, S. Kapa, F. López-Jiménez, P. M. McKie et al., “Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram,” Nature Medicine, vol. 25, no. 1, pp. 70–74, 01 2019.
  4. A. Vaid, J. X. Jiang, A. Sawant, S. Lerakis et al., “A foundational vision transformer improves diagnostic performance for electrocardiograms,” npj Digital Medicine, vol. 6, no. 1, 06 2023.
  5. Ö. Yıldırım, M. Talo, E. J. Ciaccio, R. S. Tan et al., “Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records,” Computer Methods and Programs in Biomedicine, vol. 197, pp. 105 740–105 740, 12 2020.
  6. O. Faust, M. Kareem, A. Ali, E. J. Ciaccio et al., “Automated arrhythmia detection based on RR intervals,” Diagnostics, vol. 11, no. 8, pp. 1446–1446, 08 2021.
  7. B. Tutuko, S. Nurmaini, A. E. Tondas, M. N. Rachmatullah et al., “AFibNet: an implementation of atrial fibrillation detection with convolutional neural network,” BMC Medical Informatics and Decision Making, vol. 21, no. 1, 07 2021.
  8. B. He, A. C. Kwan, J. H. Cho, N. Yuan et al., “Blinded, randomized trial of sonographer versus AI cardiac function assessment,” Nature, vol. 616, no. 7957, pp. 520–524, 04 2023.
  9. J. Kwon, Y.-Y. Jo, S.-Y. Lee, and K.-H. Kim, “Artificial intelligence using electrocardiography: strengths and pitfalls,” European Heart Journal, vol. 42, no. 30, pp. 2896–2898, 03 2021.
  10. M. Reyes, R. Meier, S. Pereira, C. A. Silva et al., “On the interpretability of artificial intelligence in radiology: Challenges and opportunities,” Radiology, vol. 2, no. 3, pp. e190 043–e190 043, 05 2020.
  11. Y. Ayano, F. Schwenker, B. Dufera, and T. Debelee, “Interpretable machine learning techniques in ECG-based heart disease classification: A systematic review.” Diagnostics, vol. 13, no. 1, 2022.
  12. S. Mousavi, F. Afghah, and U. R. Acharya, “HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks,” Computers in Biology and Medicine, vol. 127, p. 104057, 2020.
  13. Z. Attia, D. Harmon, E. R. Behr, and P. A. Friedman, “Application of artificial intelligence to the electrocardiogram,” European Heart Journal, vol. 42, no. 46, pp. 4717–4730, 09 2021.
  14. J. Belen, S. Mousavi, A. Shamsoshoara, and F. Afghah, “An uncertainty estimation framework for risk assessment in deep learning-based AFib classification,” in 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 960–964.
  15. J. Zheng, J. Zhang, S. Danioko, H. Yao et al., “A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients,” Scientific Data, vol. 7, no. 48, 02 2020.
  16. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2021.
  17. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  18. S. Douedi, A. Mararenko, A. Alshami, M. Al-Azzawi et al., “COVID-19 induced bradyarrhythmia and relative bradycardia: An overview,” Journal of Arrhythmia, vol. 37, no. 4, pp. 888–892, 2021.
  19. E. A. Amaratunga, D. S. Corwin, L. Moran, and R. Snyder, “Bradycardia in patients with COVID-19: A calm before the storm?” Cureus, vol. 12, no. 6, 2020.
  20. S. Aziz, S. Ahmed, and M. Alouini, “ECG-based machine-learning algorithms for heartbeat classification,” Scientific Reports, vol. 11, no. 1, 09 2021.
  21. M. Strik, S. Ploux, D. J. Weigel, J. van der Zande et al., “The use of smartwatch electrocardiogram beyond arrhythmia detection,” Trends in Cardiovascular Medicine, 01 2023.
  22. M. Porumb, E. Iadanza, S. Massaro, and L. Pecchia, “A convolutional neural network approach to detect congestive heart failure,” Biomedical Signal Processing and Control, vol. 55, p. 101597, 2020.
  23. D. Makowski, T. Pham, Z. J. Lau, J. C. Brammer et al., “NeuroKit2: A python toolbox for neurophysiological signal processing,” Behavior Research Methods, vol. 53, no. 4, pp. 1689–1696, 02 2021.
  24. J. Zheng, H. Chu, D. Struppa, J. Zhang et al., “Optimal multi-stage arrhythmia classification approach,” Scientific Reports, vol. 10, no. 2898, 02 2020.
  25. K. K. Proniewska, R. Abächerli, and P. M. van Dam, “The ΔΔ\Deltaroman_Δ-wave ECG: The differences to the normal 12-lead ECG amplitudes,” Journal of Electrocardiology, vol. 76, pp. 45–54, 2023.
  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit et al., “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017.
  27. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam et al., “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.
  28. M. Abadi, A. Agarwal, P. Barham, E. Brevdo et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/
  29. S. Mousavi and F. Afghah, “Inter- and intra- patient ECG heartbeat classification for arrhythmia detection: A sequence to sequence deep learning approach,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1308–1312.
  30. T. O’Malley, E. Bursztein, J. Long, F. Chollet et al., “Keras tuner,” 2019. [Online]. Available: https://github.com/keras-team/keras-tuner
  31. T. Hong, B. George, M. Hashim, and D. E. Feierman, “Preoperative atrial fibrillation and T-wave inversion associated with postoperative pulmonary edema,” Open Journal of Anesthesiology, vol. 6, no. 10, pp. 181–185, 2016.
  32. M. Li, W. Zhang, and D. Xia, “Transformer inference acceleration in edge computing environment,” in 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), 2023, pp. 104–109.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Aruna Mohan (2 papers)
  2. Danne Elbers (1 paper)
  3. Or Zilbershot (1 paper)
  4. Fatemeh Afghah (90 papers)
  5. David Vorchheimer (1 paper)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com