Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wavelet Analysis of Noninvasive EEG Signals Discriminates Complex and Natural Grasp Types (2402.09447v1)

Published 31 Jan 2024 in eess.SP, cs.AI, cs.LG, and q-bio.NC

Abstract: This research aims to decode hand grasps from Electroencephalograms (EEGs) for dexterous neuroprosthetic development and Brain-Computer Interface (BCI) applications, especially for patients with motor disorders. Particularly, it focuses on distinguishing two complex natural power and precision grasps in addition to a neutral condition as a no-movement condition using a new EEG-based BCI platform and wavelet signal processing. Wavelet analysis involved generating time-frequency and topographic maps from wavelet power coefficients. Then, by using machine learning techniques with novel wavelet features, we achieved high average accuracies: 85.16% for multiclass, 95.37% for No-Movement vs Power, 95.40% for No-Movement vs Precision, and 88.07% for Power vs Precision, demonstrating the effectiveness of these features in EEG-based grasp differentiation. In contrast to previous studies, a critical part of our study was permutation feature importance analysis, which highlighted key features for grasp classification. It revealed that the most crucial brain activities during grasping occur in the motor cortex, within the alpha and beta frequency bands. These insights demonstrate the potential of wavelet features in real-time neuroprosthetic technology and BCI applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Rupp, R., Kleih, S. C., Leeb, R., del R. Millan, J., Kübler, A., and Müller-Putz, G. R., “Brain–computer interfaces and assistive technology,” Brain-Computer-Interfaces in their ethical, social and cultural contexts, pp. 7–38, 2014.
  2. Grimm, F. and Gharabaghi, A., “Closed-loop neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton,” Frontiers in neuroscience, vol. 10, p. 284, 2016.
  3. Park, W., Jeong, W., Kwon, G.-H., Kim, Y.-H., and Kim, L., “A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach,” in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).   IEEE, 2013, pp. 1–4.
  4. Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J., “Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges,” Sensors, vol. 19, no. 6, p. 1423, 2019.
  5. Rhif, M., Ben Abbes, A., Farah, I. R., Martínez, B., and Sang, Y., “Wavelet transform application for/in non-stationary time-series analysis: A review,” Applied Sciences, vol. 9, no. 7, p. 1345, 2019.
  6. Xu, B., Zhang, D., Wang, Y., Deng, L., Wang, X., Wu, C., and Song, A., “Decoding different reach-and-grasp movements using noninvasive electroencephalogram,” Frontiers in Neuroscience, vol. 15, p. 684547, 2021.
  7. Schwarz, A., Ofner, P., Pereira, J., Sburlea, A. I., and Müller-Putz, G. R., “Decoding natural reach-and-grasp actions from human eeg,” Journal of neural engineering, vol. 15, no. 1, p. 016005, 2017.
  8. Schwarz, A., Escolano, C., Montesano, L., and Müller-Putz, G. R., “Analyzing and decoding natural reach-and-grasp actions using gel, water and dry eeg systems,” Frontiers in neuroscience, vol. 14, p. 849, 2020.
  9. Cohen, M. X., “A better way to define and describe morlet wavelets for time-frequency analysis,” NeuroImage, vol. 199, pp. 81–86, 2019.
  10. Kohavi, R. et al., “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Ijcai, vol. 14, no. 2.   Montreal, Canada, 1995, pp. 1137–1145.
  11. Iturrate, I., Chavarriaga, R., Pereira, M., Zhang, H., Corbet, T., Leeb, R., and Millán, J. d. R., “Human eeg reveals distinct neural correlates of power and precision grasping types,” NeuroImage, vol. 181, pp. 635–644, 2018.
  12. Li, H., Huang, G., Lin, Q., Zhao, J.-L., Lo, W.-L. A., Mao, Y.-R., Chen, L., Zhang, Z.-G., Huang, D.-F., and Li, L., “Combining movement-related cortical potentials and event-related desynchronization to study movement preparation and execution,” Frontiers in neurology, vol. 9, p. 822, 2018.
  13. Jochumsen, M., Niazi, I. K., Dremstrup, K., and Kamavuako, E. N., “Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation,” Medical & biological engineering & computing, vol. 54, pp. 1491–1501, 2016.
  14. Schwarz, A., Pereira, J., Lindner, L., and Müller-Putz, G. R., “Combining frequency and time-domain eeg features for classification of self-paced reach-and-grasp actions,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).   IEEE, 2019, pp. 3036–3041.
  15. Castiello, U., “The neuroscience of grasping,” Nature Reviews Neuroscience, vol. 6, no. 9, pp. 726–736, 2005.
Citations (3)

Summary

We haven't generated a summary for this paper yet.