Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling Imperfect: A Wavelet-Infused Multilevel Heterogeneous Network for Human Activity Recognition in Flawed Wearable Sensor Data (2402.09434v1)

Published 26 Jan 2024 in eess.SP and cs.LG

Abstract: The popularity and diffusion of wearable devices provides new opportunities for sensor-based human activity recognition that leverages deep learning-based algorithms. Although impressive advances have been made, two major challenges remain. First, sensor data is often incomplete or noisy due to sensor placement and other issues as well as data transmission failure, calling for imputation of missing values, which also introduces noise. Second, human activity has multi-scale characteristics. Thus, different groups of people and even the same person may behave differently under different circumstances. To address these challenges, we propose a multilevel heterogeneous neural network, called MHNN, for sensor data analysis. We utilize multilevel discrete wavelet decomposition to extract multi-resolution features from sensor data. This enables distinguishing signals with different frequencies, thereby suppressing noise. As the components resulting from the decomposition are heterogeneous, we equip the proposed model with heterogeneous feature extractors that enable the learning of multi-scale features. Due to the complementarity of these features, we also include a cross aggregation module for enhancing their interactions. An experimental study using seven publicly available datasets offers evidence that MHNN can outperform other cutting-edge models and offers evidence of robustness to missing values and noise. An ablation study confirms the importance of each module.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. L. Yao, Q. Z. Sheng, B. Benatallah, S. Dustdar, X. Wang, A. Shemshadi, and S. S. Kanhere, “Wits: an iot-endowed computational framework for activity recognition in personalized smart homes,” Computing, vol. 100, pp. 369–385, 2018.
  2. Z. Xiao, H. B. Lim, and L. Ponnambalam, “Participatory sensing for smart cities: A case study on transport trip quality measurement,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 759–770, 2017.
  3. D. K. Vishwakarma and C. Dhiman, “A unified model for human activity recognition using spatial distribution of gradients and difference of gaussian kernel,” The Visual Computer, vol. 35, no. 11, pp. 1595–1613, 2019.
  4. S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, H. Zhao, X. Miao, R. Liu, and G. Fortino, “Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges,” Information Fusion, vol. 80, pp. 241–265, 2022.
  5. Q. Xiao and R. Song, “Action recognition based on hierarchical dynamic bayesian network,” Multimedia Tools and Applications, vol. 77, pp. 6955–6968, 2018.
  6. M. Ullah, H. Ullah, S. D. Khan, and F. A. Cheikh, “Stacked lstm network for human activity recognition using smartphone data,” in 2019 8th European workshop on visual information processing (EUVIP).   IEEE, 2019, pp. 175–180.
  7. A. Jain and V. Kanhangad, “Human activity classification in smartphones using accelerometer and gyroscope sensors,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1169–1177, 2017.
  8. Y. Zhao, R. Yang, G. Chevalier, X. Xu, and Z. Zhang, “Deep residual bidir-lstm for human activity recognition using wearable sensors,” Mathematical Problems in Engineering, vol. 2018, pp. 1–13, 2018.
  9. C. Hu, Y. Chen, L. Hu, and X. Peng, “A novel random forests based class incremental learning method for activity recognition,” Pattern Recognition, vol. 78, pp. 277–290, 2018.
  10. J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep convolutional neural networks on multichannel time series for human activity recognition,” in Ijcai, vol. 15.   Buenos Aires, Argentina, 2015, pp. 3995–4001.
  11. S. Ha and S. Choi, “Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors,” in 2016 international joint conference on neural networks (IJCNN).   IEEE, 2016, pp. 381–388.
  12. Y. Tang, L. Zhang, F. Min, and J. He, “Multiscale deep feature learning for human activity recognition using wearable sensors,” IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 2106–2116, 2022.
  13. Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity recognition using wearables,” Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol. 1, no. 2, pp. 1–28, 2017.
  14. F. Hernández, L. F. Suárez, J. Villamizar, and M. Altuve, “Human activity recognition on smartphones using a bidirectional lstm network,” in 2019 XXII symposium on image, signal processing and artificial vision (STSIVA).   IEEE, 2019, pp. 1–5.
  15. K. Wang, J. He, and L. Zhang, “Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors,” IEEE Sensors Journal, vol. 19, no. 17, pp. 7598–7604, 2019.
  16. S. Mahmud, M. Tonmoy, K. K. Bhaumik, A. M. Rahman, M. A. Amin, M. Shoyaib, M. A. H. Khan, and A. A. Ali, “Human activity recognition from wearable sensor data using self-attention,” arXiv preprint arXiv:2003.09018, 2020.
  17. S. K. Challa, A. Kumar, and V. B. Semwal, “A multibranch cnn-bilstm model for human activity recognition using wearable sensor data,” The Visual Computer, vol. 38, no. 12, pp. 4095–4109, 2022.
  18. K. Xia, J. Huang, and H. Wang, “Lstm-cnn architecture for human activity recognition,” IEEE Access, vol. 8, pp. 56 855–56 866, 2020.
  19. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE transactions on pattern analysis and machine intelligence, vol. 11, no. 7, pp. 674–693, 1989.
  20. Y. Chen and C. Shen, “Performance analysis of smartphone-sensor behavior for human activity recognition,” Ieee Access, vol. 5, pp. 3095–3110, 2017.
  21. Z. Chen, Q. Zhu, Y. C. Soh, and L. Zhang, “Robust human activity recognition using smartphone sensors via ct-pca and online svm,” IEEE transactions on industrial informatics, vol. 13, no. 6, pp. 3070–3080, 2017.
  22. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine,” in Ambient Assisted Living and Home Care: 4th International Workshop, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings 4.   Springer, 2012, pp. 216–223.
  23. U. M. Nunes, D. R. Faria, and P. Peixoto, “A human activity recognition framework using max-min features and key poses with differential evolution random forests classifier,” Pattern Recognition Letters, vol. 99, pp. 21–31, 2017.
  24. A. Tharwat, H. Mahdi, M. Elhoseny, and A. E. Hassanien, “Recognizing human activity in mobile crowdsensing environment using optimized k-nn algorithm,” Expert Systems with Applications, vol. 107, pp. 32–44, 2018.
  25. M. A. Al-qaness, A. Dahou, M. Abd Elaziz, and A. Helmi, “Multi-resatt: Multilevel residual network with attention for human activity recognition using wearable sensors,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 144–152, 2022.
  26. F. Luo, S. Khan, Y. Huang, and K. Wu, “Activity-based person identification using multimodal wearable sensor data,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1711–1723, 2022.
  27. S. Xu, L. Zhang, Y. Tang, C. Han, H. Wu, and A. Song, “Channel attention for sensor-based activity recognition: Embedding features into all frequencies in dct domain,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  28. J. Wang, Z. Wang, J. Li, and J. Wu, “Multilevel wavelet decomposition network for interpretable time series analysis,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2437–2446.
  29. M. Srivastava, C. L. Anderson, and J. H. Freed, “A new wavelet denoising method for selecting decomposition levels and noise thresholds,” IEEE access, vol. 4, pp. 3862–3877, 2016.
  30. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  31. Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional feature fusion,” in Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2021, pp. 3560–3569.
  32. A. Anjum and M. U. Ilyas, “Activity recognition using smartphone sensors,” in 2013 ieee 10th consumer communications and networking conference (ccnc).   IEEE, 2013, pp. 914–919.
  33. F. Cruciani, C. Sun, S. Zhang, C. Nugent, C. Li, S. Song, C. Cheng, I. Cleland, and P. Mccullagh, “A public domain dataset for human activity recognition in free-living conditions,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).   IEEE, 2019, pp. 166–171.
  34. A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,” in 2012 16th international symposium on wearable computers.   IEEE, 2012, pp. 108–109.
  35. D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al., “Collecting complex activity datasets in highly rich networked sensor environments,” in 2010 Seventh international conference on networked sensing systems (INSS).   IEEE, 2010, pp. 233–240.
  36. T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable devices: An investigation of position-aware activity recognition,” in 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom).   IEEE, 2016, pp. 1–9.
  37. O. Baños, M. Damas, H. Pomares, I. Rojas, M. A. Tóth, and O. Amft, “A benchmark dataset to evaluate sensor displacement in activity recognition,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, 2012, pp. 1026–1035.
  38. T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Tröster, “Wearable activity tracking in car manufacturing,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 42–50, 2008.
  39. S. Liu, S. Yao, J. Li, D. Liu, T. Wang, H. Shao, and T. Abdelzaher, “Giobalfusion: A global attentional deep learning framework for multisensor information fusion,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 1, pp. 1–27, 2020.
  40. F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1, p. 115, 2016.
  41. V. S. Murahari and T. Plötz, “On attention models for human activity recognition,” in Proceedings of the 2018 ACM international symposium on wearable computers, 2018, pp. 100–103.
  42. J. Han, Y. He, J. Liu, Q. Zhang, and X. Jing, “Graphconvlstm: Spatiotemporal learning for activity recognition with wearable sensors,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
  43. A. Abedin, M. Ehsanpour, Q. Shi, H. Rezatofighi, and D. C. Ranasinghe, “Attend and discriminate: Beyond the state-of-the-art for human activity recognition using wearable sensors,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5, no. 1, pp. 1–22, 2021.
  44. C. Wang, Y. Gao, A. Mathur, A. C. De C. Williams, N. D. Lane, and N. Bianchi-Berthouze, “Leveraging activity recognition to enable protective behavior detection in continuous data,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5, no. 2, pp. 1–27, 2021.
  45. S. Miao, L. Chen, R. Hu, and Y. Luo, “Towards a dynamic inter-sensor correlations learning framework for multi-sensor-based wearable human activity recognition,” Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol. 6, no. 3, pp. 1–25, 2022.
  46. K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, and F. Nie, “A semisupervised recurrent convolutional attention model for human activity recognition,” IEEE transactions on neural networks and learning systems, vol. 31, no. 5, pp. 1747–1756, 2019.
  47. V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and I. De Munari, “Iot wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8553–8562, 2019.
  48. Y. Ma and H. Ghasemzadeh, “Labelforest: Non-parametric semi-supervised learning for activity recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 4520–4527.
  49. A. Saeed, T. Ozcelebi, and J. Lukkien, “Multi-task self-supervised learning for human activity detection,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 2, pp. 1–30, 2019.
  50. A. Y. A. Amer, J.-M. Aerts, B. Vanrumste, and S. Luca, “A localized learning approach applied to human activity recognition,” IEEE Intelligent Systems, vol. 36, no. 3, pp. 58–71, 2020.
  51. H. Zhang, Z. Xiao, J. Wang, F. Li, and E. Szczerbicki, “A novel iot-perceptive human activity recognition (har) approach using multihead convolutional attention,” IEEE Internet of Things Journal, vol. 7, no. 2, pp. 1072–1080, 2019.
  52. W. Gao, L. Zhang, Q. Teng, J. He, and H. Wu, “Danhar: Dual attention network for multimodal human activity recognition using wearable sensors,” Applied Soft Computing, vol. 111, p. 107728, 2021.
  53. H. Qian, S. J. Pan, and C. Miao, “Distribution-based semi-supervised learning for activity recognition,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 7699–7706.
  54. Y. Tang, Q. Teng, L. Zhang, F. Min, and J. He, “Efficient convolutional neural networks with smaller filters for human activity recognition using wearable sensors,” arXiv preprint arXiv:2005.03948, 2020.
  55. X. Zhang, Y. Wong, M. S. Kankanhalli, and W. Geng, “Hierarchical multi-view aggregation network for sensor-based human activity recognition,” PloS one, vol. 14, no. 9, p. e0221390, 2019.
  56. Y. Zhang, Z. Zhang, Y. Zhang, J. Bao, Y. Zhang, and H. Deng, “Human activity recognition based on motion sensor using u-net,” IEEE Access, vol. 7, pp. 75 213–75 226, 2019.
  57. S. Mohamad, M. Sayed-Mouchaweh, and A. Bouchachia, “Online active learning for human activity recognition from sensory data streams,” Neurocomputing, vol. 390, pp. 341–358, 2020.
  58. Q. Teng, K. Wang, L. Zhang, and J. He, “The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition,” IEEE Sensors Journal, vol. 20, no. 13, pp. 7265–7274, 2020.
  59. W. Lu, F. Fan, J. Chu, P. Jing, and S. Yuting, “Wearable computing for internet of things: A discriminant approach for human activity recognition,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2749–2759, 2018.
  60. Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for multivariate time series with missing values,” Scientific reports, vol. 8, no. 1, p. 6085, 2018.
  61. M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt, “Set functions for time series,” in International Conference on Machine Learning.   PMLR, 2020, pp. 4353–4363.
  62. S. N. Shukla and B. M. Marlin, “Multi-time attention networks for irregularly sampled time series,” arXiv preprint arXiv:2101.10318, 2021.
  63. Shukla, Satya Narayan and Marlin, Benjamin M, “Interpolation-prediction networks for irregularly sampled time series,” arXiv preprint arXiv:1909.07782, 2019.
  64. Y. Wu, J. Ni, W. Cheng, B. Zong, D. Song, Z. Chen, Y. Liu, X. Zhang, H. Chen, and S. B. Davidson, “Dynamic gaussian mixture based deep generative model for robust forecasting on sparse multivariate time series,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 651–659.
  65. Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the dots: Multivariate time series forecasting with graph neural networks,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, 2020, pp. 753–763.
  66. X. Zhang, M. Zeman, T. Tsiligkaridis, and M. Zitnik, “Graph-guided network for irregularly sampled multivariate time series,” arXiv preprint arXiv:2110.05357, 2021.

Summary

We haven't generated a summary for this paper yet.