Fixed-sparsity matrix approximation from matrix-vector products (2402.09379v3)
Abstract: We study the problem of approximating a matrix $\mathbf{A}$ with a matrix that has a fixed sparsity pattern (e.g., diagonal, banded, etc.), when $\mathbf{A}$ is accessed only by matrix-vector products. We describe a simple randomized algorithm that returns an approximation with the given sparsity pattern with Frobenius-norm error at most $(1+\varepsilon)$ times the best possible error. When each row of the desired sparsity pattern has at most $s$ nonzero entries, this algorithm requires $O(s/\varepsilon)$ non-adaptive matrix-vector products with $\mathbf{A}$. We also prove a matching lower-bound, showing that, for any sparsity pattern with $\Theta(s)$ nonzeros per row and column, any algorithm achieving $(1+\epsilon)$ approximation requires $\Omega(s/\varepsilon)$ matrix-vector products in the worst case. We thus resolve the matrix-vector product query complexity of the problem up to constant factors, even for the well-studied case of diagonal approximation, for which no previous lower bounds were known.
- “Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings” In Journal of Computer and System Sciences 18.2 Elsevier BV, 1979, pp. 155–193 DOI: 10.1016/0022-0000(79)90045-x
- Michele Benzi, Paola Boito and Nader Razouk “Decay Properties of Spectral Projectors with Applications to Electronic Structure” In SIAM Review 55.1 Society for Industrial & Applied Mathematics (SIAM), 2013, pp. 3–64 DOI: 10.1137/100814019
- Ainesh Bakshi, Kenneth L. Clarkson and David P. Woodruff “Low-Rank Approximation with 1/ϵ1/31superscriptitalic-ϵ131/\epsilon^{1/3}1 / italic_ϵ start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT Matrix-Vector Products” In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 Rome, Italy: Association for Computing Machinery, 2022, pp. 1130–1143 DOI: 10.1145/3519935.3519988
- Nicolas Boullé, Christopher J. Earls and Alex Townsend “Data-driven discovery of Green’s functions with human-understandable deep learning” In Sci. Rep. 12.1, 2022, pp. 4824
- “Operator learning without the adjoint”, 2024 arXiv:2401.17739 [math.NA]
- “The Gradient Complexity of Linear Regression” In Proceedings of Thirty Third Conference on Learning Theory 125, Proceedings of Machine Learning Research PMLR, 2020, pp. 627–647 URL: https://proceedings.mlr.press/v125/braverman20a.html
- Nicolas Boullé, Diana Halikias and Alex Townsend “Elliptic PDE learning is provably data-efficient” In Proceedings of the National Academy of Sciences 120.39, 2023, pp. e2303904120
- C. Bekas, E. Kokiopoulou and Y. Saad “An estimator for the diagonal of a matrix” In Applied Numerical Mathematics 57.11–12 Elsevier BV, 2007, pp. 1214–1229 DOI: 10.1016/j.apnum.2007.01.003
- Robert A. Baston and Yuji Nakatsukasa “Stochastic diagonal estimation: probabilistic bounds and an improved algorithm”, 2022 arXiv:2201.10684 [cs.DS]
- “Krylov Methods are (nearly) Optimal for Low-Rank Approximation” In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) IEEE, 2023 DOI: 10.1109/focs57990.2023.00128
- “Decay bounds and O(n)𝑂𝑛O(n)italic_O ( italic_n ) algorithms for approximating functions of sparse matrices” In Electron. Trans. Numer. Anal. 28, 2007-2008, pp. 16–39
- “Decay Bounds for Functions of Hermitian Matrices with Banded or Kronecker Structure” In SIAM Journal on Matrix Analysis and Applications 36.3 Society for Industrial & Applied Mathematics (SIAM), 2015, pp. 1263–1282 DOI: 10.1137/151006159
- “A comparative study of sparse approximate inverse preconditioners” In Applied Numerical Mathematics 30.2–3 Elsevier BV, 1999, pp. 305–340 DOI: 10.1016/s0168-9274(98)00118-4
- Thomas F. Coleman and Jin-Yi Cai “The Cyclic Coloring Problem and Estimation of Sparse Hessian Matrices” In SIAM Journal on Algebraic Discrete Methods 7.2 Society for Industrial & Applied Mathematics (SIAM), 1986, pp. 221–235 DOI: 10.1137/0607026
- “Query lower bounds for log-concave sampling” In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) IEEE, 2023 DOI: 10.1109/focs57990.2023.00131
- Thomas F. Coleman and Jorge J. Moré “Estimation of Sparse Jacobian Matrices and Graph Coloring Blems” In SIAM Journal on Numerical Analysis 20.1 Society for Industrial & Applied Mathematics (SIAM), 1983, pp. 187–209 DOI: 10.1137/0720013
- A.R. Curtis, M.J.D. Powell and J.K. Reid “On the Estimation of Sparse Jacobian Matrices” In IMA Journal of Applied Mathematics 13.1 Oxford University Press (OUP), 1974, pp. 117–119 DOI: 10.1093/imamat/13.1.117
- Kenneth L Clarkson and David P Woodruff “Numerical linear algebra in the streaming model” In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, 2009, pp. 205–214
- “A Tight Analysis of Hutchinson’s Diagonal Estimator” In Symposium on Simplicity in Algorithms (SOSA) Society for IndustrialApplied Mathematics, 2023, pp. 353–364 DOI: 10.1137/1.9781611977585.ch32
- Stephen Demko, William F. Moss and Philip W. Smith “Decay rates for inverses of band matrices” In Mathematics of Computation 43.168 American Mathematical Society (AMS), 1984, pp. 491–499 DOI: 10.1090/s0025-5718-1984-0758197-9
- “Sketching Sparse Matrices, Covariances, and Graphs via Tensor Products” In IEEE Transactions on Information Theory 61.3 Institute of ElectricalElectronics Engineers (IEEE), 2015, pp. 1373–1388 DOI: 10.1109/tit.2015.2391251
- Yonina C. Eldar and Gitta Kutyniok “Compressed sensing: theory and applications” Cambridge; New York: Cambridge University Press, 2012
- Ethan N. Epperly and Joel A. Tropp “Efficient error and variance estimation for randomized matrix computations”, 2023 arXiv:2207.06342 [math.NA]
- “A Mathematical Introduction to Compressive Sensing” In Applied and Numerical Harmonic Analysis Springer New York, 2013 DOI: 10.1007/978-0-8176-4948-7
- Andreas Frommer, Claudia Schimmel and Marcel Schweitzer “Analysis of Probing Techniques for Sparse Approximation and Trace Estimation of Decaying Matrix Functions” In SIAM Journal on Matrix Analysis and Applications 42.3 Society for Industrial & Applied Mathematics (SIAM), 2021, pp. 1290–1318 DOI: 10.1137/20m1364461
- Didier Girard “Un algorithme rapide pour le calcul de la trace de l’inverse d’une grande matrice”, 1987
- Anne Greenbaum “Iterative Methods for Solving Linear Systems” Philadelphia, PA, USA: Society for IndustrialApplied Mathematics, 1997
- “Efficient Solution of Parabolic Equations by Krylov Approximation Methods” In SIAM Journal on Scientific and Statistical Computing 13.5 Society for Industrial & Applied Mathematics (SIAM), 1992, pp. 1236–1264 DOI: 10.1137/0913071
- Nicholas J. Higham “Functions of Matrices” Society for IndustrialApplied Mathematics, 2008 DOI: 10.1137/1.9780898717778
- Eric Hallman, Ilse C.F. Ipsen and Arvind K. Saibaba “Monte Carlo Methods for Estimating the Diagonal of a Real Symmetric Matrix” In SIAM Journal on Matrix Analysis and Applications 44.1 Society for Industrial & Applied Mathematics (SIAM), 2023, pp. 240–269 DOI: 10.1137/22m1476277
- N. Halko, P.G. Martinsson and J.A. Tropp “Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions” In SIAM Rev. 53.2, 2011, pp. 217–288 DOI: 10.1137/090771806
- “Structured matrix recovery from matrix‐vector products” In Numerical Linear Algebra with Applications 31.1 Wiley, 2023 DOI: 10.1002/nla.2531
- M.F. Hutchinson “A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines” In Communications in Statistics - Simulation and Computation 18.3 Informa UK Limited, 1989, pp. 1059–1076 DOI: 10.1080/03610918908812806
- “Optimal Sketching for Trace Estimation” In Advances in Neural Information Processing Systems 34 Curran Associates, Inc., 2021, pp. 23741–23753 URL: https://proceedings.neurips.cc/paper_files/paper/2021/file/c77bfda61a0204d445185053e6a9a8fe-Paper.pdf
- “Physics-informed machine learning” In Nat. Rev. Phys. 3.6 Nature Publishing Group, 2021, pp. 422–440
- Willi A. Kalender and Willi A. Kalender “Computed tomography: fundamentals, system technology, image quality, applications; [including 64-slice spiral CT]” Erlangen: Publicis Publ, 2011
- Lin Lin, Jianfeng Lu and Lexing Ying “Fast construction of hierarchical matrix representation from matrix–vector multiplication” In Journal of Computational Physics 230.10 Elsevier BV, 2011, pp. 4071–4087 DOI: 10.1016/j.jcp.2011.02.033
- “Linear-Complexity Black-Box Randomized Compression of Rank-Structured Matrices”, 2022 arXiv:2205.02990 [math.NA]
- “Randomized Compression of Rank-Structured Matrices Accelerated with Graph Coloring”, 2022 arXiv:2205.03406 [math.NA]
- Per-Gunnar Martinsson “Compressing Rank-Structured Matrices via Randomized Sampling” In SIAM Journal on Scientific Computing 38.4 Society for Industrial & Applied Mathematics (SIAM), 2016, pp. A1959–A1986 DOI: 10.1137/15m1016679
- “Hutch++: Optimal Stochastic Trace Estimation” In Symposium on Simplicity in Algorithms (SOSA) Society for IndustrialApplied Mathematics, 2021, pp. 142–155 DOI: 10.1137/1.9781611976496.16
- Per-Gunnar Martinsson and Joel A. Tropp “Randomized numerical linear algebra: Foundations and algorithms” In Acta Numerica 29 Cambridge University Press (CUP), 2020, pp. 403–572 DOI: 10.1017/s0962492920000021
- Robb J. Muirhead “Aspects of Multivariate Statistical Theory” In Wiley Series in Probability and Statistics Wiley, 1982 DOI: 10.1002/9780470316559
- “Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software”, 2023 arXiv:2302.11474 [math.NA]
- Deanna Needell, William Swartworth and David P. Woodruff “Testing Positive Semidefiniteness Using Linear Measurements” In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) IEEE, 2022 DOI: 10.1109/focs54457.2022.00016
- Barak A. Pearlmutter “Fast Exact Multiplication by the Hessian” In Neural Computation 6.1 MIT Press - Journals, 1994, pp. 147–160 DOI: 10.1162/neco.1994.6.1.147
- “Approximating Sparse Matrices and their Functions using Matrix-vector products”, 2023 arXiv:2310.05625 [math.NA]
- Eric Price and David P. Woodruff “(1 + eps)-Approximate Sparse Recovery” In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science IEEE, 2011 DOI: 10.1109/focs.2011.92
- Max Simchowitz, Ahmed El Alaoui and Benjamin Recht “Tight query complexity lower bounds for PCA via finite sample deformed wigner law” In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC ’18 ACM, 2018 DOI: 10.1145/3188745.3188796
- Robert J. Serfling “Approximation Theorems of Mathematical Statistics” In Wiley Series in Probability and Statistics Wiley, 1980 DOI: 10.1002/9780470316481
- John Skilling “The Eigenvalues of Mega-dimensional Matrices” In Maximum Entropy and Bayesian Methods Springer Netherlands, 1989, pp. 455–466 DOI: 10.1007/978-94-015-7860-8˙48
- Florian Schäfer, Matthias Katzfuss and Houman Owhadi “Sparse Cholesky Factorization by Kullback–Leibler Minimization” In SIAM Journal on Scientific Computing 43.3 Society for Industrial & Applied Mathematics (SIAM), 2021, pp. A2019–A2046 DOI: 10.1137/20m1336254
- Andreas Stathopoulos, Jesse Laeuchli and Kostas Orginos “Hierarchical Probing for Estimating the Trace of the Matrix Inverse on Toroidal Lattices” In SIAM Journal on Scientific Computing 35.5 Society for Industrial & Applied Mathematics (SIAM), 2013, pp. S299–S322 DOI: 10.1137/120881452
- “Sparse recovery of elliptic solvers from matrix-vector products”, 2021 arXiv:2110.05351 [math.NA]
- William Swartworth and David P. Woodruff “Optimal Eigenvalue Approximation via Sketching” In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC ’23 ACM, 2023 DOI: 10.1145/3564246.3585102
- “Querying a Matrix through Matrix-Vector Products” In ACM Trans. Algorithms 17.4 Association for Computing Machinery, 2021
- Nick Trefethen “A Hundred-dollar, Hundred-digit Challenge” In SIAM News 35.1, 2002
- Jok M. Tang and Yousef Saad “A probing method for computing the diagonal of a matrix inverse” In Numerical Linear Algebra with Applications 19.3 Wiley, 2011, pp. 485–501 DOI: 10.1002/nla.779
- Joel A Tropp and Robert J Webber “Randomized algorithms for low-rank matrix approximation: Design, analysis, and applications” In arXiv preprint arXiv:2306.12418, 2023
- Roman Vershynin “High-Dimensional Probability” Cambridge University Press, 2018 DOI: 10.1017/9781108231596
- Thakshila Wimalajeewa, Yonina C. Eldar and Pramod K. Varshney “Recovery of Sparse Matrices via Matrix Sketching”, 2013 arXiv:1311.2448 [cs.NA]
- Andrew Waters, Aswin Sankaranarayanan and Richard Baraniuk “SpaRCS: Recovering low-rank and sparse matrices from compressive measurements” In Advances in Neural Information Processing Systems 24 Curran Associates, Inc., 2011 URL: https://proceedings.neurips.cc/paper_files/paper/2011/file/0ff8033cf9437c213ee13937b1c4c455-Paper.pdf
- “The kernel polynomial method” In Reviews of Modern Physics 78.1 American Physical Society (APS), 2006, pp. 275–306 DOI: 10.1103/revmodphys.78.275