Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PC-NeRF: Parent-Child Neural Radiance Fields Using Sparse LiDAR Frames in Autonomous Driving Environments (2402.09325v1)

Published 14 Feb 2024 in cs.CV and cs.RO

Abstract: Large-scale 3D scene reconstruction and novel view synthesis are vital for autonomous vehicles, especially utilizing temporally sparse LiDAR frames. However, conventional explicit representations remain a significant bottleneck towards representing the reconstructed and synthetic scenes at unlimited resolution. Although the recently developed neural radiance fields (NeRF) have shown compelling results in implicit representations, the problem of large-scale 3D scene reconstruction and novel view synthesis using sparse LiDAR frames remains unexplored. To bridge this gap, we propose a 3D scene reconstruction and novel view synthesis framework called parent-child neural radiance field (PC-NeRF). Based on its two modules, parent NeRF and child NeRF, the framework implements hierarchical spatial partitioning and multi-level scene representation, including scene, segment, and point levels. The multi-level scene representation enhances the efficient utilization of sparse LiDAR point cloud data and enables the rapid acquisition of an approximate volumetric scene representation. With extensive experiments, PC-NeRF is proven to achieve high-precision novel LiDAR view synthesis and 3D reconstruction in large-scale scenes. Moreover, PC-NeRF can effectively handle situations with sparse LiDAR frames and demonstrate high deployment efficiency with limited training epochs. Our approach implementation and the pre-trained models are available at https://github.com/biter0088/pc-nerf.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na, Z. Li, C. Lv, J. Wang, D. Cao, N. Zheng, and F.-Y. Wang, “Milestones in autonomous driving and intelligent vehicles: Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1046–1056, 2023, doi: 10.1109/TIV.2022.3223131.
  2. S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan, F. Zhu, and L. Chen, “Motion planning for autonomous driving: The state of the art and future perspectives,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 6, pp. 3692–3711, 2023, doi: 10.1109/TIV.2023.3274536.
  3. Z. Li and J. Zhu, “Point-based neural scene rendering for street views,” IEEE Transactions on Intelligent Vehicles, 2023, doi: 10.1109/TIV.2023.3304347.
  4. X. Zhong, Y. Pan, J. Behley, and C. Stachniss, “Shine-mapping: Large-scale 3d mapping using sparse hierarchical implicit neural representations,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 8371–8377, doi: 10.1109/ICRA48891.2023.10160907.
  5. Y. Ran, J. Zeng, S. He, J. Chen, L. Li, Y. Chen, G. Lee, and Q. Ye, “Neurar: Neural uncertainty for autonomous 3d reconstruction with implicit neural representations,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 1125–1132, 2023, doi: 10.1109/LRA.2023.3235686.
  6. J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 8218–8227, doi: 10.48550/arXiv.2303.10709.
  7. H. Turki, D. Ramanan, and M. Satyanarayanan, “Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 922–12 931, doi: 10.1109/CVPR52688.2022.01258.
  8. Y. Chang, K. Ebadi, C. E. Denniston, M. F. Ginting, A. Rosinol, A. Reinke, M. Palieri, J. Shi, A. Chatterjee, B. Morrell et al., “Lamp 2.0: A robust multi-robot slam system for operation in challenging large-scale underground environments,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9175–9182, 2022, doi: 10.1109/LRA.2022.3191204.
  9. H. Parr, C. Harvey, and G. Burnett, “Investigating levels of remote operation in high-level on-road autonomous vehicles using operator sequence diagrams,” 2023, doi: 10.21203/rs.3.rs-2510863/v1.
  10. J. Zhang, J. Pu, J. Xue, M. Yang, X. Xu, X. Wang, and F.-Y. Wang, “Hivegpt: human-machine-augmented intelligent vehicles with generative pre-trained transformer,” IEEE Transactions on Intelligent Vehicles, 2023, doi: 10.1109/TIV.2023.3256982.
  11. J. Wang, Z. Wang, B. Yu, J. Tang, S. L. Song, C. Liu, and Y. Hu, “Data fusion in infrastructure-augmented autonomous driving system: Why? where? and how?” IEEE Internet of Things Journal, 2023, doi: 10.1109/JIOT.2023.3266247.
  12. Z. Song, Z. He, X. Li, Q. Ma, R. Ming, Z. Mao, H. Pei, L. Peng, J. Hu, D. Yao et al., “Synthetic datasets for autonomous driving: A survey,” arXiv preprint arXiv:2304.12205, 2023, doi: 10.48550/arXiv.2304.12205.
  13. Y. Wang, L. Xu, F. Zhang, H. Dong, Y. Liu, and G. Yin, “An adaptive fault-tolerant ekf for vehicle state estimation with partial missing measurements,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 3, pp. 1318–1327, 2021, doi: 10.1109/TMECH.2021.3065210.
  14. I. Raouf, A. Khan, S. Khalid, M. Sohail, M. M. Azad, and H. S. Kim, “Sensor-based prognostic health management of advanced driver assistance system for autonomous vehicles: A recent survey,” Mathematics, vol. 10, no. 18, p. 3233, 2022, doi: 10.3390/math10183233.
  15. M. Waqas and P. Ioannou, “Automatic vehicle following under safety, comfort, and road geometry constraints,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 531–546, 2022, doi: 10.1109/TIV.2022.3177176.
  16. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Autonomous robots, vol. 34, pp. 189–206, 2013, doi: 10.1007/s10514-012-9321-0.
  17. X. Hu, G. Xiong, J. Ma, G. Cui, Q. Yu, S. Li, and Z. Zhou, “A non-uniform quadtree map building method including dead-end semantics extraction,” Green Energy and Intelligent Transportation, vol. 2, no. 2, p. 100071, 2023, doi: 10.1016/j.geits.2023.100071.
  18. I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson surface reconstruction for lidar odometry and mapping,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 5624–5630, doi: 10.1109/ICRA48506.2021.9562069.
  19. X. Yang, G. Lin, Z. Chen, and L. Zhou, “Neural vector fields: Implicit representation by explicit learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16 727–16 738, doi: 10.1109/CVPR52729.2023.01605.
  20. D. Yu, M. Lau, L. Gao, and H. Fu, “Sketch beautification: Learning part beautification and structure refinement for sketches of man-made objects,” arXiv preprint arXiv:2306.05832, 2023, doi: 10.48550/arXiv.2306.05832.
  21. P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction,” arXiv preprint arXiv:2106.10689, 2021, doi: 10.48550/arXiv.2106.10689.
  22. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021, doi: 10.1145/3503250.
  23. S. Liu and J. Zhu, “Efficient map fusion for multiple implicit slam agents,” IEEE Transactions on Intelligent Vehicles, 2023, doi: 10.1109/TIV.2023.3297194.
  24. X. Chen, Z. Song, J. Zhou, D. Xie, and J. Lu, “Camera and lidar fusion for urban scene reconstruction and novel view synthesis via voxel-based neural radiance fields,” Remote Sensing, vol. 15, no. 18, p. 4628, 2023, doi: 10.3390/rs15184628.
  25. E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping and positioning in real-time,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6229–6238, doi: 10.1109/ICCV48922.2021.00617.
  26. A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. de La Fortelle, “Lens: Localization enhanced by nerf synthesis,” in Conference on Robot Learning.   PMLR, 2022, pp. 1347–1356, doi: 10.48550/arXiv.2110.06558.
  27. Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 786–12 796, doi: 10.1109/CVPR52688.2022.01245.
  28. X. Yu, Y. Liu, S. Mao, S. Zhou, R. Xiong, Y. Liao, and Y. Wang, “Nf-atlas: Multi-volume neural feature fields for large scale lidar mapping,” arXiv preprint arXiv:2304.04624, 2023, doi: 10.48550/arXiv.2304.04624.
  29. T. Tao, L. Gao, G. Wang, P. Chen, D. Hao, X. Liang, M. Salzmann, and K. Yu, “Lidar-nerf: Novel lidar view synthesis via neural radiance fields,” 2023, doi: 10.48550/arXiv.2304.10406.
  30. J. Zhang, F. Zhang, S. Kuang, and L. Zhang, “Nerf-lidar: Generating realistic lidar point clouds with neural radiance fields,” arXiv preprint arXiv:2304.14811, 2023, doi: 10.48550/arXiv.2304.14811.
  31. S. Huang, Z. Gojcic, Z. Wang, F. Williams, Y. Kasten, S. Fidler, K. Schindler, and O. Litany, “Neural lidar fields for novel view synthesis,” arXiv preprint arXiv:2305.01643, 2023, doi: 10.48550/arXiv.2305.01643.
  32. H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley, and C. Stachniss, “Ir-mcl: Implicit representation-based online global localization,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1627–1634, 2023, doi: 10.1109/LRA.2023.3239318.
  33. L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang, J. Behley, and C. Stachniss, “Locndf: Neural distance field mapping for robot localization,” IEEE Robotics and Automation Letters, 2023, doi: 10.1109/LRA.2023.3291274.
  34. K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi, T. Funkhouser, and V. Ferrari, “Urban radiance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 932–12 942, doi: 10.1109/CVPR52688.2022.01259.
  35. M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Barron, and H. Kretzschmar, “Block-nerf: Scalable large scene neural view synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8248–8258, doi: 10.1109/CVPR52688.2022.00807.
  36. M. Zhenxing and D. Xu, “Switch-nerf: Learning scene decomposition with mixture of experts for large-scale neural radiance fields,” in The Eleventh International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=PQ2zoIZqvm
  37. D. Rebain, W. Jiang, S. Yazdani, K. Li, K. M. Yi, and A. Tagliasacchi, “Derf: Decomposed radiance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14 153–14 161, doi: 10.1109/CVPR46437.2021.01393.
  38. C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 14 335–14 345, doi: 10.1109/ICCV48922.2021.01407.
  39. L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel fields,” Advances in Neural Information Processing Systems, vol. 33, pp. 15 651–15 663, 2020, doi: 10.5555/3495724.3497037.
  40. Y. Xiangli, L. Xu, X. Pan, N. Zhao, A. Rao, C. Theobalt, B. Dai, and D. Lin, “Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering,” in European conference on computer vision.   Springer, 2022, pp. 106–122, doi: 10.1007/978-3-031-19824-3_7.
  41. R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields for unconstrained photo collections,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7210–7219.
  42. J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen, “Overlaptransformer: An efficient and yaw-angle-invariant transformer network for lidar-based place recognition,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6958–6965, 2022, doi: 10.1109/LRA.2022.3178797.
  43. K. Wang, T. Zhou, X. Li, and F. Ren, “Performance and challenges of 3d object detection methods in complex scenes for autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1699–1716, 2022, doi: 10.1109/TIV.2022.3213796.
  44. A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++: Fast and accurate lidar semantic segmentation,” in 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2019, pp. 4213–4220, doi: 10.1109/IROS40897.2019.8967762.
  45. X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang, “Vox-fusion: Dense tracking and mapping with voxel-based neural implicit representation,” in 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).   IEEE, 2022, pp. 499–507.
  46. E. Haines, “Essential ray tracing,” Glas89, pp. 33–77, 1989.
  47. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in 2012 IEEE conference on computer vision and pattern recognition.   IEEE, 2012, pp. 3354–3361, doi: 10.1109/CVPR.2012.6248074.
  48. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 9297–9307, doi: 10.1109/ICCV.2019.00939.
  49. L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d reconstruction in function space,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 4460–4470.
  50. S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–57, 2002, doi: 10.1145/504729.504754.
  51. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014, doi: 10.48550/arXiv.1412.6980.
Citations (2)

Summary

  • The paper introduces PC-NeRF, which uses hierarchical spatial partitioning and multi-level representation to reconstruct large-scale 3D driving scenes from sparse LiDAR data.
  • The method partitions scenes into parent and child NeRFs, enabling efficient and scalable processing of outdoor environments in autonomous driving.
  • Experimental results on KITTI and MaiCity datasets demonstrate high accuracy and swift deployment potential with minimal training epochs.

Enhancing Large-Scale 3D Scene Reconstruction and Novel View Synthesis with PC-NeRF

Introduction to PC-NeRF

The task of large-scale 3D scene reconstruction and novel view synthesis is vital for autonomous driving systems, demanding high precision and efficiency in the utilisation of sparse LiDAR data. Traditional methods, although capable of visual depiction, are challenged by the discrete nature of explicit representations, limiting the potential for scenes to be rendered at unlimited resolutions. The introduction of neural radiance fields (NeRF) offers a promising direction, leveraging a continuous, differentiable framework for scene representation. However, the specific challenges of applying NeRF techniques to outdoor environments with sparse LiDAR frames remain underexplored.

To address this gap, we present the Parent-Child Neural Radiance Fields (PC-NeRF) framework. PC-NeRF innovates on the standard NeRF approach by implementing hierarchical spatial partitioning and multi-level scene representation tailored to the characteristics of outdoor driving environments and the sparse nature of LiDAR data typically available in autonomous driving scenarios.

Hierarchical Spatial Partitioning

PC-NeRF divides the driving environment into multiple large blocks, termed parent NeRFs, which are further partitioned into geometric segments represented by child NeRFs. This structure allows for efficient spatial organization and a scalable approach to representing extensive outdoor scenes, enabling the specific challenges posed by sparse LiDAR data to be managed more effectively.

Multi-level Scene Representation

Building on the hierarchical spatial organization, PC-NeRF employs a multi-level scene representation strategy. This innovative approach optimizes the scene representation at various levels of granularity—from the broad scope of the scene level down to the precise details at the point level. Such a multi-faceted framework aids in swiftly capturing the intricate details of large-scale environments even when faced with the inherent limitations of sparse LiDAR frames.

Experimental Validation

Extensive experiments confirm that PC-NeRF achieves notable accuracy in novel LiDAR view synthesis and 3D scene reconstruction across various test scenes from the KITTI and MaiCity datasets. Noteworthy is PC-NeRF's capacity to efficiently handle sparse LiDAR frames, embodying a significant step forward in the practical application of NeRF techniques to outdoor autonomous driving scenarios. Additionally, PC-NeRF demonstrates excellent deployment efficiency, able to produce high-quality reconstructions with a minimal number of training epochs, which denotes a critical advancement in the field, enhancing the swift deployment potential of NeRF-based methods in real-world applications.

Implications and Future Directions

PC-NeRF's introduction of hierarchical spatial partitioning and multi-level scene representation presents a robust framework for efficiently tackling the challenges of large-scale 3D scene reconstruction and novel view synthesis with sparse LiDAR data. The framework's capabilities in handling sparse LiDAR frames open potential avenues for further research, particularly concerning the integration of PC-NeRF with real-time object detection and localization processes in autonomous driving systems. The exploration of these opportunities could further solidify the role of PC-NeRF within the broader ecosystem of autonomous driving technologies, pushing the boundaries of what is achievable in real-world applications.

In conclusion, PC-NeRF represents a significant advance in the ongoing development of techniques for 3D scene reconstruction and novel view synthesis, especially in the context of autonomous driving. Its ability to efficiently process sparse LiDAR frames while maintaining high precision in scene reconstruction underscores the framework's potential for wide-ranging applications in autonomous vehicle navigation and beyond.

X Twitter Logo Streamline Icon: https://streamlinehq.com