Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Celestial Conformal Primaries in Effective Field Theories (2402.09256v1)

Published 14 Feb 2024 in hep-th

Abstract: Scattering amplitudes in $d+2$ dimensions can be recast as correlators of conformal primary operators in a putative holographic CFT$d$ by working in a basis of boost eigenstates instead of momentum eigenstates. It has been shown previously that conformal primary operators with $\Delta \in \frac{d}{2} + i {\mathbb R}$ form a basis for massless one-particle representations. In this paper, we consider more general conformal primary operators with $\Delta \in {\mathbb C}$ and show that completeness, normalizability, and consistency with CPT implies that we must restrict the scaling dimensions to either $\Delta \in \frac{d}{2} + i {\mathbb R}$ or $\Delta \in {\mathbb R}$. Unlike those with $\Delta \in \frac{d}{2} + i {\mathbb R}$, the conformal primaries with $\Delta \in {\mathbb R}$ can be constructed without knowledge of the UV and can therefore be defined in effective field theories. With additional analyticity assumptions, we can restrict $\Delta \in 2 - {\mathbb Z}{\geq0}$ or $\Delta \in \frac{1}{2}-{\mathbb Z}_{\geq0}$ for bosonic or fermionic operators, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
  2. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  3. S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81 no. 12, (2021) 1062, arXiv:2108.04801 [hep-th].
  4. A.-M. Raclariu, “Lectures on Celestial Holography,” arXiv:2107.02075 [hep-th].
  5. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
  6. D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014) 058, arXiv:1406.3312 [hep-th].
  7. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
  8. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
  9. G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG2010 (2010) 010, arXiv:1102.4632 [gr-qc].
  10. S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.
  11. F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” arXiv:1404.4091 [hep-th].
  12. T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
  13. T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].
  14. M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].
  15. D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” Adv. Theor. Math. Phys. 21 (2017) 1769–1785, arXiv:1506.02906 [hep-th].
  16. M. Campiglia and A. Laddha, “Loop Corrected Soft Photon Theorem as a Ward Identity,” JHEP 10 (2019) 287, arXiv:1903.09133 [hep-th].
  17. T. He and P. Mitra, “Covariant Phase Space and Soft Factorization in Non-Abelian Gauge Theories,” JHEP 03 (2021) 015, arXiv:2009.14334 [hep-th].
  18. F. Berends and W. Giele, “Multiple soft gluon radiation in parton processes,” Nuclear Physics B 313 no. 3, (1989) 595–633. https://www.sciencedirect.com/science/article/pii/0550321389903982.
  19. V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of QED,” Phys. Rev. Lett. 113 no. 11, (2014) 111601, arXiv:1407.3814 [hep-th].
  20. A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” Phys. Rev. Lett. 116 no. 3, (2016) 031602, arXiv:1509.00543 [hep-th].
  21. T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-dimensional fermionic symmetry in supersymmetric gauge theories,” JHEP 08 (2021) 051, arXiv:1511.07429 [hep-th].
  22. M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New symmetries of quantum gravity?,” Phys. Lett. B 764 (2017) 218–221, arXiv:1605.09094 [gr-qc].
  23. M. Campiglia and A. Laddha, “Subleading soft photons and large gauge transformations,” JHEP 11 (2016) 012, arXiv:1605.09677 [hep-th].
  24. M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,” JHEP 01 (2017) 036, arXiv:1608.00685 [gr-qc].
  25. A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity,” JHEP 10 (2017) 065, arXiv:1706.00759 [hep-th].
  26. A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories,” JHEP 05 (2018) 132, arXiv:1709.03850 [hep-th].
  27. E. Himwich and A. Strominger, “Celestial current algebra from Low’s subleading soft theorem,” Phys. Rev. D 100 no. 6, (2019) 065001, arXiv:1901.01622 [hep-th].
  28. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Sub-subleading soft graviton theorem from asymptotic Einstein’s equations,” JHEP 05 (2022) 186, arXiv:2111.15607 [hep-th].
  29. A. Strominger, “w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries,” Phys. Rev. Lett. 127 no. 22, (2021) 221601.
  30. A. Ball, S. A. Narayanan, J. Salzer, and A. Strominger, “Perturbatively exact w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT asymptotic symmetry of quantum self-dual gravity,” JHEP 01 (2022) 114, arXiv:2111.10392 [hep-th].
  31. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Higher spin dynamics in gravity and w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT celestial symmetries,” Phys. Rev. D 106 no. 8, (2022) 086013, arXiv:2112.15573 [hep-th].
  32. S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 no. 6, (2017) 065022, arXiv:1705.01027 [hep-th].
  33. S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 no. 6, (2017) 065026, arXiv:1701.00049 [hep-th].
  34. L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019) 184, arXiv:1810.05219 [hep-th].
  35. M. Pate, A.-M. Raclariu, and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” Phys. Rev. D 100 no. 8, (2019) 085017, arXiv:1904.10831 [hep-th].
  36. A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020) 130, arXiv:1905.09799 [hep-th].
  37. M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 no. 09, (2021) 2140003, arXiv:1910.07424 [hep-th].
  38. S. Albayrak, C. Chowdhury, and S. Kharel, “On loop celestial amplitudes for gauge theory and gravity,” Phys. Rev. D 102 (2020) 126020, arXiv:2007.09338 [hep-th].
  39. H. A. González, A. Puhm, and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102 no. 12, (2020) 126027, arXiv:2009.07290 [hep-th].
  40. N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].
  41. S. Pasterski, A. Puhm, and E. Trevisani, “Revisiting the conformally soft sector with celestial diamonds,” JHEP 11 (2021) 143, arXiv:2105.09792 [hep-th].
  42. Y. Pano, S. Pasterski, and A. Puhm, “Conformally soft fermions,” JHEP 12 (2021) 166, arXiv:2108.11422 [hep-th].
  43. A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 no. 24, (2022) 241601, arXiv:2202.08438 [hep-th].
  44. E. Casali, W. Melton, and A. Strominger, “Celestial amplitudes as AdS-Witten diagrams,” JHEP 11 (2022) 140, arXiv:2204.10249 [hep-th].
  45. C. Jorge-Diaz, S. Pasterski, and A. Sharma, “Celestial amplitudes in an ambidextrous basis,” JHEP 02 (2023) 155, arXiv:2212.00962 [hep-th].
  46. L. P. de Gioia and A.-M. Raclariu, “Celestial Sector in CFT: Conformally Soft Symmetries,” arXiv:2303.10037 [hep-th].
  47. D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197 (1987) 129–134.
  48. A. Strominger, “w(1+infinity) and the Celestial Sphere,” arXiv:2105.14346 [hep-th].
  49. D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 no. 12, (2017) 121601, arXiv:1609.00282 [hep-th].
  50. D. Kapec and P. Mitra, “A d𝑑ditalic_d-Dimensional Stress Tensor for Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th].
  51. A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D Kac-Moody Symmetry,” JHEP 02 (2018) 079, arXiv:1705.00608 [hep-th].
  52. S. Mizera, “Physics of the analytic S-matrix,” Phys. Rept. 1047 (2024) 1–92, arXiv:2306.05395 [hep-th].
  53. L. Freidel, D. Pranzetti, and A.-M. Raclariu, “A discrete basis for celestial holography,” arXiv:2212.12469 [hep-th].
  54. J. Cotler, N. Miller, and A. Strominger, “An Integer Basis for Celestial Amplitudes,” arXiv:2302.04905 [hep-th].
  55. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 6, 2005.
  56. L. Donnay, G. Giribet, H. González, A. Puhm, and F. Rojas, “Celestial open strings at one-loop,” JHEP 10 (2023) 047, arXiv:2307.03551 [hep-th].
  57. A. Guevara, E. Himwich, M. Pate, and A. Strominger, “Holographic symmetry algebras for gauge theory and gravity,” JHEP 11 (2021) 152, arXiv:2103.03961 [hep-th].
  58. T. Adamo, W. Bu, E. Casali, and A. Sharma, “Celestial operator products from the worldsheet,” JHEP 06 (2022) 052, arXiv:2111.02279 [hep-th].
  59. E. Himwich, M. Pate, and K. Singh, “Celestial operator product expansions and w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT symmetry for all spins,” JHEP 01 (2022) 080, arXiv:2108.07763 [hep-th].
  60. S. Ebert, A. Sharma, and D. Wang, “Descendants in celestial CFT and emergent multi-collinear factorization,” JHEP 03 (2021) 030, arXiv:2009.07881 [hep-th].
  61. A. Ball, Y. Hu, and S. Pasterski, “Multicollinear Singularities in Celestial CFT,” arXiv:2309.16602 [hep-th].
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com