Celestial Conformal Primaries in Effective Field Theories (2402.09256v1)
Abstract: Scattering amplitudes in $d+2$ dimensions can be recast as correlators of conformal primary operators in a putative holographic CFT$d$ by working in a basis of boost eigenstates instead of momentum eigenstates. It has been shown previously that conformal primary operators with $\Delta \in \frac{d}{2} + i {\mathbb R}$ form a basis for massless one-particle representations. In this paper, we consider more general conformal primary operators with $\Delta \in {\mathbb C}$ and show that completeness, normalizability, and consistency with CPT implies that we must restrict the scaling dimensions to either $\Delta \in \frac{d}{2} + i {\mathbb R}$ or $\Delta \in {\mathbb R}$. Unlike those with $\Delta \in \frac{d}{2} + i {\mathbb R}$, the conformal primaries with $\Delta \in {\mathbb R}$ can be constructed without knowledge of the UV and can therefore be defined in effective field theories. With additional analyticity assumptions, we can restrict $\Delta \in 2 - {\mathbb Z}{\geq0}$ or $\Delta \in \frac{1}{2}-{\mathbb Z}_{\geq0}$ for bosonic or fermionic operators, respectively.
- A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
- S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81 no. 12, (2021) 1062, arXiv:2108.04801 [hep-th].
- A.-M. Raclariu, “Lectures on Celestial Holography,” arXiv:2107.02075 [hep-th].
- T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, arXiv:1401.7026 [hep-th].
- D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity 𝒮𝒮\mathcal{S}caligraphic_S-matrix,” JHEP 08 (2014) 058, arXiv:1406.3312 [hep-th].
- H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
- R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
- G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG2010 (2010) 010, arXiv:1102.4632 [gr-qc].
- S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.
- F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” arXiv:1404.4091 [hep-th].
- T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].
- T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].
- M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].
- D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” Adv. Theor. Math. Phys. 21 (2017) 1769–1785, arXiv:1506.02906 [hep-th].
- M. Campiglia and A. Laddha, “Loop Corrected Soft Photon Theorem as a Ward Identity,” JHEP 10 (2019) 287, arXiv:1903.09133 [hep-th].
- T. He and P. Mitra, “Covariant Phase Space and Soft Factorization in Non-Abelian Gauge Theories,” JHEP 03 (2021) 015, arXiv:2009.14334 [hep-th].
- F. Berends and W. Giele, “Multiple soft gluon radiation in parton processes,” Nuclear Physics B 313 no. 3, (1989) 595–633. https://www.sciencedirect.com/science/article/pii/0550321389903982.
- V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of QED,” Phys. Rev. Lett. 113 no. 11, (2014) 111601, arXiv:1407.3814 [hep-th].
- A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” Phys. Rev. Lett. 116 no. 3, (2016) 031602, arXiv:1509.00543 [hep-th].
- T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-dimensional fermionic symmetry in supersymmetric gauge theories,” JHEP 08 (2021) 051, arXiv:1511.07429 [hep-th].
- M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New symmetries of quantum gravity?,” Phys. Lett. B 764 (2017) 218–221, arXiv:1605.09094 [gr-qc].
- M. Campiglia and A. Laddha, “Subleading soft photons and large gauge transformations,” JHEP 11 (2016) 012, arXiv:1605.09677 [hep-th].
- M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,” JHEP 01 (2017) 036, arXiv:1608.00685 [gr-qc].
- A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity,” JHEP 10 (2017) 065, arXiv:1706.00759 [hep-th].
- A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories,” JHEP 05 (2018) 132, arXiv:1709.03850 [hep-th].
- E. Himwich and A. Strominger, “Celestial current algebra from Low’s subleading soft theorem,” Phys. Rev. D 100 no. 6, (2019) 065001, arXiv:1901.01622 [hep-th].
- L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Sub-subleading soft graviton theorem from asymptotic Einstein’s equations,” JHEP 05 (2022) 186, arXiv:2111.15607 [hep-th].
- A. Strominger, “w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries,” Phys. Rev. Lett. 127 no. 22, (2021) 221601.
- A. Ball, S. A. Narayanan, J. Salzer, and A. Strominger, “Perturbatively exact w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT asymptotic symmetry of quantum self-dual gravity,” JHEP 01 (2022) 114, arXiv:2111.10392 [hep-th].
- L. Freidel, D. Pranzetti, and A.-M. Raclariu, “Higher spin dynamics in gravity and w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT celestial symmetries,” Phys. Rev. D 106 no. 8, (2022) 086013, arXiv:2112.15573 [hep-th].
- S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 no. 6, (2017) 065022, arXiv:1705.01027 [hep-th].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 no. 6, (2017) 065026, arXiv:1701.00049 [hep-th].
- L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” JHEP 01 (2019) 184, arXiv:1810.05219 [hep-th].
- M. Pate, A.-M. Raclariu, and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” Phys. Rev. D 100 no. 8, (2019) 085017, arXiv:1904.10831 [hep-th].
- A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020) 130, arXiv:1905.09799 [hep-th].
- M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 no. 09, (2021) 2140003, arXiv:1910.07424 [hep-th].
- S. Albayrak, C. Chowdhury, and S. Kharel, “On loop celestial amplitudes for gauge theory and gravity,” Phys. Rev. D 102 (2020) 126020, arXiv:2007.09338 [hep-th].
- H. A. González, A. Puhm, and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102 no. 12, (2020) 126027, arXiv:2009.07290 [hep-th].
- N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08 (2021) 062, arXiv:2012.04208 [hep-th].
- S. Pasterski, A. Puhm, and E. Trevisani, “Revisiting the conformally soft sector with celestial diamonds,” JHEP 11 (2021) 143, arXiv:2105.09792 [hep-th].
- Y. Pano, S. Pasterski, and A. Puhm, “Conformally soft fermions,” JHEP 12 (2021) 166, arXiv:2108.11422 [hep-th].
- A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 no. 24, (2022) 241601, arXiv:2202.08438 [hep-th].
- E. Casali, W. Melton, and A. Strominger, “Celestial amplitudes as AdS-Witten diagrams,” JHEP 11 (2022) 140, arXiv:2204.10249 [hep-th].
- C. Jorge-Diaz, S. Pasterski, and A. Sharma, “Celestial amplitudes in an ambidextrous basis,” JHEP 02 (2023) 155, arXiv:2212.00962 [hep-th].
- L. P. de Gioia and A.-M. Raclariu, “Celestial Sector in CFT: Conformally Soft Symmetries,” arXiv:2303.10037 [hep-th].
- D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197 (1987) 129–134.
- A. Strominger, “w(1+infinity) and the Celestial Sphere,” arXiv:2105.14346 [hep-th].
- D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 no. 12, (2017) 121601, arXiv:1609.00282 [hep-th].
- D. Kapec and P. Mitra, “A d𝑑ditalic_d-Dimensional Stress Tensor for Minkd+2𝑑2{}_{d+2}start_FLOATSUBSCRIPT italic_d + 2 end_FLOATSUBSCRIPT Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th].
- A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D Kac-Moody Symmetry,” JHEP 02 (2018) 079, arXiv:1705.00608 [hep-th].
- S. Mizera, “Physics of the analytic S-matrix,” Phys. Rept. 1047 (2024) 1–92, arXiv:2306.05395 [hep-th].
- L. Freidel, D. Pranzetti, and A.-M. Raclariu, “A discrete basis for celestial holography,” arXiv:2212.12469 [hep-th].
- J. Cotler, N. Miller, and A. Strominger, “An Integer Basis for Celestial Amplitudes,” arXiv:2302.04905 [hep-th].
- S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 6, 2005.
- L. Donnay, G. Giribet, H. González, A. Puhm, and F. Rojas, “Celestial open strings at one-loop,” JHEP 10 (2023) 047, arXiv:2307.03551 [hep-th].
- A. Guevara, E. Himwich, M. Pate, and A. Strominger, “Holographic symmetry algebras for gauge theory and gravity,” JHEP 11 (2021) 152, arXiv:2103.03961 [hep-th].
- T. Adamo, W. Bu, E. Casali, and A. Sharma, “Celestial operator products from the worldsheet,” JHEP 06 (2022) 052, arXiv:2111.02279 [hep-th].
- E. Himwich, M. Pate, and K. Singh, “Celestial operator product expansions and w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT symmetry for all spins,” JHEP 01 (2022) 080, arXiv:2108.07763 [hep-th].
- S. Ebert, A. Sharma, and D. Wang, “Descendants in celestial CFT and emergent multi-collinear factorization,” JHEP 03 (2021) 030, arXiv:2009.07881 [hep-th].
- A. Ball, Y. Hu, and S. Pasterski, “Multicollinear Singularities in Celestial CFT,” arXiv:2309.16602 [hep-th].