Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Long Distance Free Space Quantum Secure Direct Communication for Web 3.0 Networks (2402.09108v5)

Published 14 Feb 2024 in quant-ph and cs.CR

Abstract: With the advent of Web 3.0, the swift advancement of technology confronts an imminent threat from quantum computing. Security protocols safeguarding the integrity of Web 2.0 and Web 3.0 are growing more susceptible to both quantum attacks and sophisticated classical threats. The article introduces our novel long-distance free-space quantum secure direct communication (LF QSDC) as a method to safeguard against security breaches in both quantum and classical contexts. Differing from techniques like quantum key distribution (QKD), LF QSDC surpasses constraints by facilitating encrypted data transmission sans key exchanges, thus diminishing the inherent weaknesses of key-based systems. The distinctiveness of this attribute, coupled with its quantum mechanics base, protects against quantum computer assaults and advanced non-quantum dangers, harmonizing seamlessly with the untrustworthy tenets of the Web 3.0 age. The focus of our study is the technical design and incorporation of LF QSDC into web 3.0 network infrastructures, highlighting its efficacy for extended-range communication. LF QSDC is based on the memory DL04 protocol and enhanced with our novel Quantum-Aware Low-Density Parity Check (LDPC), Pointing, Acquisition, and Tracking (PAT) technologies, and Atmospheric Quantum Correction Algorithm (AQCA). Utilizing this method not only bolsters the security of worldwide Web 3.0 networks but also guarantees their endurance in a time when quantum and sophisticated classical threats exist simultaneously. Consequently, LF QSDC stands out as a robust security solution, well-suited for Web 3.0 systems amidst the constantly evolving digital environment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proc. 35th Annu. Symp. Foundations of Computer Science. IEEE, 1994, pp. 124–134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett., vol. 79, no. 2, pp. 325–328, 1997.
  3. X. Liu, D. Luo, G. L. Lin, Z. H. Chen, C. F. Huang, S. Z. Li, C. X. Zhang, Z. R. Zhang, and K. J. Wei, “Fiber based quantum secure direct communication without active polarization compensation,” Sci. China Phys. Mech. Astron., vol. 65, no. 12, p. 120311, 2022.
  4. L. Zhou, B. W. Xu, W. Zhong, and Y. B. Sheng, “Device-independent quantum secure direct communication with single-photon sources,” Phys. Rev. Appl., vol. 19, no. 1, p. 014036, 2023.
  5. I. Paparelle, F. Mousavi, F. Scazza, A. Bassi, M. Paris, and A. Zavatta, “Practical quantum secure direct communication with squeezed states,” arXiv:2306.14322, 2023.
  6. Y. B. Sheng, L. Zhou, and G. L. Long, “One-step quantum secure direct communication,” Sci. Bull. (Beijing), vol. 67, no. 4, p. 367, 2022.
  7. L. Zhou and Y. B. Sheng, “One-step device-independent quantum secure direct communication,” Sci. China Phys. Mech. Astron., vol. 65, no. 5, p. 250311, 2022.
  8. Z. Sun, L. Song, Q. Huang, L. Yin, G. Long, J. Lu, L. Hanzo, “Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5778–5792, 2020.
  9. Z. Gao, T. Li, and Z. Li, “Long-distance measurement-device–independent quantum secure direct communication,” EPL (Europhys Lett.), vol. 125, no. 4, p. 40004, 2019.
  10. W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett., vol. 118, no. 22, p. 220501, 2017.
  11. L. Yin, C. Jiang, C. Jiang, N. Ge, L. Kuang, and M. Guizani, “A communication framework with unified efficiency and secrecy,” IEEE Wireless Communications, vol. 26, no. 4, pp. 133–139, 2019.
  12. F. Deng and G. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A, vol. 69, no. 5, p. 052319, 2004.
  13. F. Deng, G. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A, vol. 68, no. 4, p. 042317, 2003.
  14. Y. X. Xiao, L. Zhou, W. Zhong, M. M. Du, and Y. B. Sheng, “The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement,” Quantum Inform. Process., vol. 22, no. 9, p. 339, 2023.
  15. I. B. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check codes for optical communication systems,” J. Lightwave Technol., vol. 23, no. 5, pp. 1939–1946, 2005.
  16. M. Bailly, E. Perez, “Pointing, acquisition, and tracking system of the European SILEX program: a major technological step for intersatellite optical communication,” in Free-Space Laser Communication Technologies III, vol. 1417, pp. 142-157, 1991.
  17. G. Yue, L. Ping, and X. Wang, “Generalized low-density parity-check codes based on Hadamard constraints,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1058–1079, 2007.
  18. Z. Sun, R. Qi, Z. Lin, L. Yin, G. Long, and J. Lu, “Design and implementation of a practical quantum secure direct communication system,” in Proc. IEEE GlobeCom Conf. Workshops, IEEE, 2018, pp. 1–6.
  19. C. Wang, F. Deng, G. Long, “Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state,” Optics Communications, vol. 253, nos. 1-3, pp. 15–20, 2005.
  20. C. Bennett, H., G. Brassard, C. Crépeau, and U. M. Maurer. “Generalized privacy amplification,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1915-1923, 1995.
  21. J. Carter, L., and M. N. Wegman. “Universal classes of hash functions,” J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143-154, 1979.
  22. J. Hu, B. Yu, M. Jing, L. Xiao, S. Jia, G. Qin, and G. L. Long. “Experimental quantum secure direct communication with single photons,” Light: Science and Applications, vol. 5, no. 9, e16144, 2016.
  23. Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo. “Fifteen years of quantum LDPC coding and improved decoding strategies,” IEEE Access, vol. 3, pp. 2492–2519, 2015.
  24. Z. Zhou, Y. Sheng, P. Niu, L. Yin, G. Long, and L. Hanzo. “Measurement-device-independent quantum secure direct communication,” Science China Physics, Mechanics & Astronomy, vol. 63, no. 3, 230362, 2020.
  25. S. Zafar and H. Khalid, “Free space optical networks: applications, challenges and research directions,” Wireless Personal Communications, vol.
  26. H. Kaushal, V. K. Jain and S. Kar, “Free-space optical channel models,” in Free Space Optical Communication, New Delhi, India: Springer, 2017, pp. 9-41.
  27. A. M. Al-Kinani, A. A. Al-Habash, A. A. Al-Habash and A. A. Al-Habash, “A survey of hybrid free space optics communication networks to overcome atmospheric turbulence,” Entropy, vol. 24, no. 11, p. 1573, 2022.
  28. T. Ye, and Z. Ji, “Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states”, arXiv preprint arXiv:2205.04631, 2021.
  29. M.Xiao, and C. Ma, “Fault-tolerant quantum private comparison protocol”, International Journal of Theoretical Physics, vol. 61, no. 1, p. 41, 2022.
  30. J. Liu, Q. Wang, Y. Yang, and Q. Wen, “Quantum private comparison protocol based on high-dimensional quantum states”, Quantum Information Processing, vol. 13, no. 11, pp. 2391-2404, 2014.
  31. R. Qi, Y. Zhang, S. Wang, H. Li, Z. Wang, S. Wang, X. Chen, and J.-W. Pan, “Experimental demonstration of free-space quantum secure direct communication with single photons”, Light: Science and Applications, vol. 9, no. 1, p. 28, 2020.
  32. G. Vallone, D. Marangon, M. Canale, I. Savorgnan, D. Bacco, M. Barbieri, S. Calimani, C. Barbieri, N. Laurenti, and P. Villoresi, “Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels”, arXiv preprint arXiv:1404.1272, 2014.
  33. L.-C. Xu, H.-Y. Chen, N.-R. Zhou, and L.-H. Gong, “Multi-party semi-quantum secure direct communication protocol with cluster states”, International Journal of Theoretical Physics, vol. 59, no. 6, pp. 2175-2186, 2020.
  34. P. Panteleev and G. Kalachev, “Degenerate Quantum LDPC Codes With Good Finite Length Performance,” Quantum, vol. 5, p. 585, 2021.
  35. P. Panteleev and G. Kalachev, “Layered Decoding of Quantum LDPC Codes,” IEEE Transactions on Information Theory, vol. 66, no. 8, pp. 5198-5209, 2020.
  36. J. Roffe, “Towards practical quantum LDPC codes,” Quantum Views, vol. 5, p. 63, 2021.
  37. M. T. Toledo, “Process Analytical Technology (PAT) - Enhance Quality and Efficiency,” 2021. [Online].
  38. S. Goswami and S. Dhara, “Satellite Relayed Global Quantum Communication without Quantum Memory,” arXiv:2306.12421, 2021.
  39. E. Perrier, “The Quantum Governance Stack: Models of Governance for Quantum Information Technologies,” Digital Society, vol. 1, no. 1, p. 22, 2022.
  40. M. Kop, “Establishing a Legal-Ethical Framework for Quantum Technology,” Yale Journal of Law and Technology, vol. 23, no. 1, pp. 1-40, 2021.
  41. D. Pan, X.-T. Song, and G.-L. Long, “Free-Space Quantum Secure Direct Communication: Basics, Progress, and Outlook,” Advanced devices and instrumentation, vol. 4, Jan. 2023, doi: https://doi.org/10.34133/adi.0004.
  42. QANplatform, “Quantum-resistant security,” [Online]. Available: https://learn.qanplatform.com/technology/technology-features/quantum-resistant-security.
  43. A. Kayal and S. Mandal, “Quantum secure direct communication using quantum key distribution and quantum encryption,” in Proc. IEEE Int. Conf. Adv. Comput. Commun. Inform. (ICACCI), Bangalore, India, Sep. 2018, pp. 1566–1571, doi: 10.1109/ICACCI.2018.8554768.
  44. A. K. Patra and S. K. Jana, “A new quantum secure direct communication protocol using decoherence-free subspace,” arXiv:2211.15941, Nov. 2021, [Online]. Available:
Citations (2)

Summary

We haven't generated a summary for this paper yet.