Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Under manipulations, are some AI models harder to audit? (2402.09043v1)

Published 14 Feb 2024 in cs.LG

Abstract: Auditors need robust methods to assess the compliance of web platforms with the law. However, since they hardly ever have access to the algorithm, implementation, or training data used by a platform, the problem is harder than a simple metric estimation. Within the recent framework of manipulation-proof auditing, we study in this paper the feasibility of robust audits in realistic settings, in which models exhibit large capacities. We first prove a constraining result: if a web platform uses models that may fit any data, no audit strategy -- whether active or not -- can outperform random sampling when estimating properties such as demographic parity. To better understand the conditions under which state-of-the-art auditing techniques may remain competitive, we then relate the manipulability of audits to the capacity of the targeted models, using the Rademacher complexity. We empirically validate these results on popular models of increasing capacities, thus confirming experimentally that large-capacity models, which are commonly used in practice, are particularly hard to audit robustly. These results refine the limits of the auditing problem, and open up enticing questions on the connection between model capacity and the ability of platforms to manipulate audit attempts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Augustin Godinot (3 papers)
  2. Gilles Tredan (26 papers)
  3. Erwan Le Merrer (28 papers)
  4. Camilla Penzo (13 papers)
  5. Francois Taïani (1 paper)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets