A Comprehensive Review of Software and Hardware Energy Efficiency of Video Decoders (2402.09001v1)
Abstract: Energy and compression efficiency are two essential parts of modern video decoder implementations that have to be considered. This work comprehensively studies the following six video coding formats regarding compression and decoding energy efficiency: AVC, VP9, HEVC, AV1, VVC, and AVM. We first evaluate the energy demand of reference and optimized software decoder implementations. Furthermore, we consider the influence of the usage of SIMD instructions on those decoder implementations. We find that AV1 is a sweet spot for optimized software decoder implementations with an additional energy demand of 16.55% and bitrate savings of -43.95% compared to VP9. We furthermore evaluate the hardware decoding energy demand of four video coding formats. Thereby, we show that AV1 has energy demand increases by 117.50% compared to VP9. For HEVC, we found a sweet spot in terms of energy demand with an increase of 6.06% with respect to VP9. Relative to their optimized software counterparts, hardware video decoders reduce the energy consumption to less than 9% compared to software decoders.
- Ericson. (2023, Jun.) Ericson mobility report. [Online]. Available: https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
- M. Efoui-Hess. (2019, Jul.) Climate crisis: The unsustainable use of online video. The practical case for digital sobriety. [Online]. Available: https://theshiftproject.org/en/article/unsustainable-use-online-video/
- C. Herglotz, S. Coulombe, S. Vakili, and A. Kaup, “Power modeling for virtual reality video playback applications,” in Proc. IEEE International Symposium on Consumer Technology (ISCT), Ancona, Italy, Jun. 2019.
- T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, jul 2003.
- G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.
- B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm, “Overview of the Versatile Video Coding (VVC) standard and its applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, Oct. 2021.
- D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and R. Bultje, “The latest open-source video codec VP9 - an overview and preliminary results,” in 2013 Picture Coding Symposium (PCS), Dec. 2013.
- Y. Chen, D. Mukherjee, J. Han, A. Grange, Y. Xu, S. Parker, C. Chen, H. Su, U. Joshi, C.-H. Chiang, Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau, N. Egge, J.-M. Valin, T. Davies, S. Midtskogen, A. Norkin, P. de Rivaz, and Z. Liu, “An overview of coding tools in AV1: the first video codec from the alliance for open media,” APSIPA Transactions on Signal and Information Processing, vol. 9, 2020.
- Videolan. x264 Encoder. Accessed 2021-09. [Online]. Available: https://code.videolan.org/videolan/x264.git
- HHI Fraunhofer. JM Decoder. Accessed 2021-09. [Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/JM
- Fast Forwards MPEG (FFmpeg). Accessed 2018-11-14. [Online]. Available: http://ffmpeg.org/
- Videolan. x265 Encoder. Accessed 2021-09. [Online]. Available: http://hg.videolan.org/x265
- HHI Fraunhofer. HM Decoder. Accessed 2021-09. [Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/HM
- openHEVC. Accessed 2021-02-25. [Online]. Available: https://github.com/OpenHEVC/openHEVC
- A. Wieckowski, J. Brandenburg, T. Hinz, C. Bartnik, V. George, G. Hege, C. Helmrich, A. Henkel, C. Lehmann, C. Stoffers, I. Zupancic, B. Bross, and D. Marpe, “VVenC: An open and optimized VVC encoder implementation,” in Proc. IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–2.
- Joint Video Exploration Team (JVET). VVC test model reference software. [Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/
- A. Wieckowski, G. Hege, C. Bartnik, C. Lehmann, C. Stoffers, B. Bross, and D. Marpe, “Towards a live software decoder implementation for the upcoming Versatile Video Coding (VVC) codec,” in Proc. IEEE International Conference on Image Processing (ICIP), pp. 3124–3128.
- Google. libvpx Codec. Accessed 2021-10. [Online]. Available: https://chromium.googlesource.com/webm/libvpx/
- A. for Open Media. libaom Codec. Accessed 2022-03. [Online]. Available: https://aomedia.googlesource.com/aom/
- DAV1D. DAV1D Software. Accessed 2022-03. [Online]. Available: https://code.videolan.org/videolan/dav1d
- Google. AVM Codec. Accessed 2022-07. [Online]. Available: https://gitlab.com/AOMediaCodec/avm
- T. Laude, Y. G. Adhisantoso, J. Voges, M. Munderloh, and J. Ostermann, “A comprehensive video codec comparison,” APSIPA Transactions on Signal and Information Processing, vol. 8, no. 1, 2019.
- M. Kränzler, C. Herglotz, and A. Kaup, “A comparative analysis of the time and energy demand of versatile video coding and high efficiency video coding reference decoders,” in Proc. IEEE International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, Sep. 2020.
- M. B. A. Khernache, Y. Benmoussa, J. Boukhobza, and D. Menard, “HEVC hardware vs software decoding: An objective energy consumption analysis and comparison,” Journal of System Architecture, vol. 115, p. 102004, May 2021.
- A. Mercat, A. Makinen, J. Sainio, A. Lemmetti, M. Viitanen, and J. Vanne, “Comparative rate-distortion-complexity analysis of VVC and HEVC video codecs,” IEEE Access, vol. 9, pp. 67 813–67 828, 2021.
- T. Nguyen and D. Marpe, “Compression efficiency analysis of AV1, VVC, and HEVC for random access applications,” APSIPA Transactions on Signal and Information Processing, vol. 10, no. 1, 2021.
- A. Katsenou, J. Mao, and I. Mavromatis, “Energy-rate-quality tradeoffs of state-of-the-art video codecs,” in Proc. Picture Coding Symposium (PCS), San Jose, CA, USA, Dec. 2022.
- X. Zhao, Z. Lei, A. Norkin, T. Daede, and A. Tourapis, “AV2 common test conditions v1.0,” document, CWG-B005o v1, Jan. 2021.
- C. Herglotz, D. Springer, M. Reichenbach, B. Stabernack, and A. Kaup, “Modeling the energy consumption of the HEVC decoding process,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 1, pp. 217–229, Jan. 2018.
- H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL: Memory power estimation and capping,” in Proc. ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), Austin, TX, USA, Aug. 2010.
- M. Kränzler, C. Herglotz, and A. Kaup, “Decoding energy assessment of VTM-6.0,” Geneva, Switzerland, document, JVET-P0084, Oct. 2019.
- G. Bjøntegaard, “Calculation of average PSNR differences between RD curves,” Austin, TX, USA, document, VCEG-M33, Jan. 2001.
- C. Herglotz, H. Och, A. Meyer, G. Ramasubbu, L. Eichermüller, M. Kränzler, F. Brand, K. Fischer, D. T. Nguyen, A. Regensky, and A. Kaup, “The bjøntegaard bible – why your way of comparing video codecs may be wrong,” IEEE Transactions on Image Processing, vol. 33, pp. 987–1001, Jan. 2024.
- J. Ström, K. Andersson, R. Sjöberg, A. Segall, F. Bossen, G. Sullivan, J.-R. Ohm, and A. Tourapis, “Working practices using objective metrics for evaluation of video coding efficiency experiments,” ITU-T and ISO/IEC, JTC 1, document, ISO/IEC DTR 23002-8, Jul. 2020.