Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Adversarial Spectrum Attacks via Distance to Decision Boundary Statistics (2402.08986v1)

Published 14 Feb 2024 in cs.CR and cs.NI

Abstract: Machine learning has been adopted for efficient cooperative spectrum sensing. However, it incurs an additional security risk due to attacks leveraging adversarial machine learning to create malicious spectrum sensing values to deceive the fusion center, called adversarial spectrum attacks. In this paper, we propose an efficient framework for detecting adversarial spectrum attacks. Our design leverages the concept of the distance to the decision boundary (DDB) observed at the fusion center and compares the training and testing DDB distributions to identify adversarial spectrum attacks. We create a computationally efficient way to compute the DDB for machine learning based spectrum sensing systems. Experimental results based on realistic spectrum data show that our method, under typical settings, achieves a high detection rate of up to 99\% and maintains a low false alarm rate of less than 1\%. In addition, our method to compute the DDB based on spectrum data achieves 54\%--64\% improvements in computational efficiency over existing distance calculation methods. The proposed DDB-based detection framework offers a practical and efficient solution for identifying malicious sensing values created by adversarial spectrum attacks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. P. J. Kolodzy, “Dynamic spectrum policies: promises and challenges,” CommLaw Conspectus, 2004.
  2. R. I. Chiang, G. B. Rowe, and K. W. Sowerby, “A quantitative analysis of spectral occupancy measurements for cognitive radio,” in 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, 2007.
  3. E. C. Peh, Y.-C. Liang, Y. L. Guan, and Y. Zeng, “Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes,” IEEE Transactions on Wireless Communications, 2010.
  4. S. Atapattu, C. Tellambura, and H. Jiang, “Energy detection based cooperative spectrum sensing in cognitive radio networks,” IEEE Transactions on wireless communications, 2011.
  5. Z. Luo, S. Zhao, Z. Lu, J. Xu, and Y. Sagduyu, “When attackers meet AI: Learning-empowered attacks in cooperative spectrum sensing,” IEEE Transactions on Mobile Computing, 2020.
  6. H. Li, Y. Gu, J. Chen, and Q. Pei, “Speed adjustment attack on cooperative sensing in cognitive vehicular networks,” IEEE Access, 2019.
  7. J. Yi, C. Poellabauer, X. S. Hu, T. Chantem, and L. Zhang, “Dynamic channel reservations for wireless multihop communications,” ACM SIGMOBILE Mobile Computing and Communications Review, 2010.
  8. C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for spectrum sensing in cognitive radio,” IEEE Journal on Selected Areas in Communications, 2019.
  9. J. Xie, C. Liu, Y.-C. Liang, and J. Fang, “Activity pattern aware spectrum sensing: A CNN-based deep learning approach,” IEEE Communications Letters, 2019.
  10. H. Wang and Y.-D. Yao, “Primary user boundary detection in cognitive radio networks: Estimated secondary user locations and impact of malicious secondary users,” IEEE Transactions on Vehicular Technology, 2018.
  11. S. Rajasegarar, C. Leckie, and M. Palaniswami, “Pattern based anomalous user detection in cognitive radio networks,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.
  12. M. Liu, H. Zhang, Z. Liu, and N. Zhao, “Attacking spectrum sensing with adversarial deep learning in cognitive radio-enabled internet of things,” IEEE Transactions on Reliability, 2022.
  13. Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, 2018.
  14. S. Zheng, L. Ye, X. Wang, J. Chen, H. Zhou, C. Lou, Z. Zhao, and X. Yang, “Primary user adversarial attacks on deep learning-based spectrum sensing and the defense method,” China Communications, 2021.
  15. D. Mickisch, F. Assion, F. Greßner, W. Günther, and M. Motta, “Understanding the decision boundary of deep neural networks: An empirical study,” arXiv preprint arXiv:2002.01810, 2020.
  16. H. Karimi, T. Derr, and J. Tang, “Characterizing the decision boundary of deep neural networks,” arXiv preprint arXiv:1912.11460, 2019.
  17. W. He, B. Li, and D. Song, “Decision boundary analysis of adversarial examples,” in International Conference on Learning Representations, 2018.
  18. S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method to fool deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
  19. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
  20. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee symposium on security and privacy (sp), 2017.
  21. J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger, “Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
  22. F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of the American statistical Association, 1951.
  23. A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on security threats and detection techniques in cognitive radio networks,” IEEE Communications Surveys & Tutorials, 2012.
  24. R. Chen, J.-M. Park, and K. Bian, “Robust distributed spectrum sensing in cognitive radio networks,” in IEEE INFOCOM 2008-The 27th Conference on Computer Communications, 2008.
  25. N. Nguyen-Thanh and I. Koo, “A robust secure cooperative spectrum sensing scheme based on evidence theory and robust statistics in cognitive radio,” IEICE transactions on communications, 2009.
  26. Y. Zhang, A. Li, J. Li, D. Han, T. Li, R. Zhang, and Y. Zhang, “Speckriging: GNN-based secure cooperative spectrum sensing,” IEEE Transactions on Wireless Communications, 2022.
  27. Z. Li, Z. Xiao, B. Wang, B. Y. Zhao, and H. Zheng, “Scaling deep learning models for spectrum anomaly detection,” in Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2019.
  28. S. Xu, Y. Shang, and H. Wang, “Double thresholds based cooperative spectrum sensing against untrusted secondary users in cognitive radio networks,” in VTC Spring 2009-IEEE 69th Vehicular Technology Conference, 2009.
  29. H. Chen, M. Zhou, L. Xie, and J. Li, “Cooperative spectrum sensing with M-ary quantized data in cognitive radio networks under SSDF attacks,” IEEE Transactions on Wireless Communications, 2017.
  30. Z. Luo, S. Zhao, R. Duan, Z. Lu, Y. E. Sagduyu, and J. Xu, “Low-cost influence-limiting defense against adversarial machine learning attacks in cooperative spectrum sensing,” in Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning, pp. 55–60.
  31. B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus, “Channel-aware adversarial attacks against deep learning-based wireless signal classifiers,” IEEE Transactions on Wireless Communications, 2021.
  32. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.
  33. K. Nar, O. Ocal, S. S. Sastry, and K. Ramchandran, “Cross-entropy loss and low-rank features have responsibility for adversarial examples,” arXiv preprint arXiv:1901.08360, 2019.
  34. G. Elsayed, D. Krishnan, H. Mobahi, K. Regan, and S. Bengio, “Large margin deep networks for classification,” Advances in neural information processing systems, 2018.
  35. D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint arXiv:1511.06422, 2015.
  36. R. H. Coase, “The federal communications commission,” The Journal of Law and Economics, 1959.
  37. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  38. N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie, Y. Sharma, T. Brown, A. Roy et al., “Technical report on the cleverhans v2. 1.0 adversarial examples library,” arXiv preprint arXiv:1610.00768, 2016.
  39. P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh, “Ead: elastic-net attacks to deep neural networks via adversarial examples,” in Proceedings of the AAAI conference on artificial intelligence, 2018.
  40. H. Tang, F. R. Yu, M. Huang, and Z. Li, “Distributed consensus-based security mechanisms in cognitive radio mobile ad hoc networks,” IET communications, 2012.
  41. Q. Yan, M. Li, T. Jiang, W. Lou, and Y. T. Hou, “Vulnerability and protection for distributed consensus-based spectrum sensing in cognitive radio networks,” in 2012 Proceedings IEEE INFOCOM, 2012.
  42. H. A. B. Salameh, S. Almajali, M. Ayyash, and H. Elgala, “Spectrum assignment in cognitive radio networks for internet-of-things delay-sensitive applications under jamming attacks,” IEEE Internet of Things Journal, 2018.
  43. J. Ren, Y. Zhang, Q. Ye, K. Yang, K. Zhang, and X. S. Shen, “Exploiting secure and energy-efficient collaborative spectrum sensing for cognitive radio sensor networks,” IEEE transactions on wireless communications, 2016.
  44. D. Adesina, C.-C. Hsieh, Y. E. Sagduyu, and L. Qian, “Adversarial machine learning in wireless communications using RF data: A review,” IEEE Communications Surveys & Tutorials, 2022.
  45. E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial training,” arXiv preprint arXiv:2001.03994, 2020.
  46. C. Finlay and A. M. Oberman, “Scaleable input gradient regularization for adversarial robustness,” arXiv preprint arXiv:1905.11468, 2019.

Summary

We haven't generated a summary for this paper yet.