Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prismatic: Interactive Multi-View Cluster Analysis of Concept Stocks (2402.08978v2)

Published 14 Feb 2024 in cs.HC, cs.CE, and cs.LG

Abstract: Financial cluster analysis allows investors to discover investment alternatives and avoid undertaking excessive risks. However, this analytical task faces substantial challenges arising from many pairwise comparisons, the dynamic correlations across time spans, and the ambiguity in deriving implications from business relational knowledge. We propose Prismatic, a visual analytics system that integrates quantitative analysis of historical performance and qualitative analysis of business relational knowledge to cluster correlated businesses interactively. Prismatic features three clustering processes: dynamic cluster generation, knowledge-based cluster exploration, and correlation-based cluster validation. Utilizing a multi-view clustering approach, it enriches data-driven clusters with knowledge-driven similarity, providing a nuanced understanding of business correlations. Through well-coordinated visual views, Prismatic facilitates a comprehensive interpretation of intertwined quantitative and qualitative features, demonstrating its usefulness and effectiveness via case studies on formulating concept stocks and extensive interviews with domain experts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. M. C. Gupta and R. J. Huefner, “A cluster analysis study of financial ratios and industry characteristics,” Journal of Accounting Research, pp. 77–95, 1972.
  2. O. A. Gwilym, I. Hasan, Q. Wang, and R. Xie, “In search of concepts: The effects of speculative demand on stock returns,” European Financial Management, vol. 22, no. 3, pp. 427–449, 2016.
  3. V. Tola, F. Lillo, M. Gallegati, and R. N. Mantegna, “Cluster analysis for portfolio optimization,” Journal of Economic Dynamics and Control, vol. 32, no. 1, pp. 235–258, 2008.
  4. R. N. Mantegna, “Hierarchical structure in financial markets,” The European Physical Journal B-Condensed Matter and Complex Systems, vol. 11, no. 1, pp. 193–197, 1999.
  5. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, and A. Kanto, “Dynamics of market correlations: Taxonomy and portfolio analysis,” Phys. Rev. E, vol. 68, p. 056110, Nov 2003.
  6. R. C. Basole, T. Clear, M. Hu, H. Mehrotra, and J. Stasko, “Understanding interfirm relationships in business ecosystems with interactive visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2526–2535, 2013.
  7. Y. Chen, Z. Wei, and X. Huang, “Incorporating corporation relationship via graph convolutional neural networks for stock price prediction,” in Proc. CIKM.   New York: ACM, 2018, p. 1655–1658.
  8. F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T.-S. Chua, “Temporal relational ranking for stock prediction,” ACM Trans. Inf. Syst., vol. 37, no. 2, Mar. 2019.
  9. D. J. Fenn et al., “Temporal evolution of financial-market correlations,” Phys. Rev. E, vol. 84, p. 026109, Aug 2011.
  10. J. Bae, T. Helldin, M. Riveiro, S. Nowaczyk, M.-R. Bouguelia, and G. Falkman, “Interactive clustering: a comprehensive review,” ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–39, 2020.
  11. M. Cavallo and ç. Demiralp, “Clustrophile 2: Guided visual clustering analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 267–276, 2019.
  12. B. C. Kwon et al., “Clustervision: Visual supervision of unsupervised clustering,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 142–151, 2018.
  13. M. Kern, A. Lex, N. Gehlenborg, and C. R. Johnson, “Interactive visual exploration and refinement of cluster assignments,” BMC bioinformatics, vol. 18, no. 1, pp. 1–13, 2017.
  14. S. Das, B. Saket, B. C. Kwon, and A. Endert, “Geono-cluster: Interactive visual cluster analysis for biologists,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 12, pp. 4401–4412, 2021.
  15. C. Turkay, J. Parulek, N. Reuter, and H. Hauser, “Interactive visual analysis of temporal cluster structures,” Computer Graphics Forum, vol. 30, no. 3, pp. 711–720, 2011.
  16. D. Sacha et al., “SOMFlow: Guided exploratory cluster analysis with self-organizing maps and analytic provenance,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 120–130, 2018.
  17. N. Cao et al., “FacetAtlas: Multifaceted visualization for rich text corpora,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1172–1181, 2010.
  18. N. Cao, D. Gotz, J. Sun, and H. Qu, “Dicon: Interactive visual analysis of multidimensional clusters,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2581–2590, 2011.
  19. J. Xia et al., “Interactive visual cluster analysis by contrastive dimensionality reduction,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 734–744, 2023.
  20. A. Pister, P. Buono, J. D. Fekete, C. Plaisant, and P. Valdivia, “Integrating prior knowledge in mixed-initiative social network clustering,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1775–1785, 2021.
  21. J. E. Nam, M. Maurer, and K. Mueller, “A high-dimensional feature clustering approach to support knowledge-assisted visualization,” Computers & Graphics, vol. 33, no. 5, pp. 607–615, 2009.
  22. P. Federico et al., “The role of explicit knowledge: A conceptual model of knowledge-assisted visual analytics,” in Proc. VAST.   Los Alamitos: IEEE, 2017, pp. 92–103.
  23. W. Zhang, W. Kam-Kwai, X. Wang, Y. Gong, R. Zhu, K. Liu, Z. Yan, S. Tan, H. Qu, S. Chen, and W. Chen, “Cohortva: A visual analytic system for interactive exploration of cohorts based on historical data,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 756–766, 2023.
  24. J. Eirich et al., “IRVINE: A design study on analyzing correlation patterns of electrical engines,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 11–21, 2022.
  25. X. Yue et al., “sPortfolio: Stratified visual analysis of stock portfolios,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 601–610, 2020.
  26. Y. Lin, W. Kam-Kwai, Y. Wang, R. Zhang, B. Dong, H. Qu, and Q. Zheng, “Taxthemis: Interactive mining and exploration of suspicious tax evasion groups,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 849–859, 2021.
  27. L. Yuan, B. Li, S. Li, W. Kam-Kwai, R. Zhang, and H. Qu, “Tax-Scheduler: An interactive visualization system for staff shifting and scheduling at tax authorities,” Visual Informatics, vol. 7, no. 2, pp. 30–40, Jun. 2023.
  28. W. Kam-Kwai, X. Wang, Y. Wang, J. He, R. Zhang, and H. Qu, “Anchorage: Visual analysis of satisfaction in customer service videos via anchor events,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–13, 2023.
  29. J. Hullman, N. Diakopoulos, and E. Adar, “Contextifier: Automatic generation of annotated stock visualizations,” in Proc. CHI.   New York: ACM, 2013, p. 2707–2716.
  30. L. Shi et al., “DeepClue: Visual interpretation of text-based deep stock prediction,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 6, pp. 1094–1108, 2019.
  31. M. D. Flood, V. L. Lemieux, M. Varga, and B. William Wong, “The application of visual analytics to financial stability monitoring,” Journal of Financial Stability, vol. 27, pp. 180–197, 2016.
  32. S. Ko et al., “A survey on visual analysis approaches for financial data,” Computer Graphics Forum, vol. 35, no. 3, pp. 599–617, 2016.
  33. M. Dumas, M. J. McGuffin, and V. L. Lemieux, “Financevis. net-a visual survey of financial data visualizations,” in Poster Abstracts of IEEE Conference on Visualization, vol. 2, 2014, p. 8.
  34. M. Wattenberg, “Visualizing the stock market,” in Proc. CHI EA.   New York: ACM, 1999, p. 188–189.
  35. S. T. Lei and K. Zhang, “A visual analytics system for financial time-series data,” in Proc. VINCI.   New York: ACM, 2010.
  36. H. Ziegler, M. Jenny, T. Gruse, and D. A. Keim, “Visual market sector analysis for financial time series data,” in 2010 IEEE Symposium on Visual Analytics Science and Technology, 2010, pp. 83–90.
  37. J. Joseph and I. Indratmo, “Visualizing stock market data with self-organizing map,” in Proc. FLAIRS, 2013.
  38. A. Rea and W. Rea, “Visualization of a stock market correlation matrix,” Physica A: Statistical Mechanics and its Applications, vol. 400, pp. 109–123, 2014.
  39. D. A. Keim et al., “A Spectral Visualization System for Analyzing Financial Time Series Data,” in Proc. EUROVIS.   The Eurographics Association, 2006.
  40. J. Alsakran, Y. Zhao, and X. Zhao, “Tile-based parallel coordinates and its application in financial visualization,” in Visualization and Data Analysis 2010, vol. 7530.   SPIE, 2010, pp. 21 – 32.
  41. H. Stitz, S. Gratzl, W. Aigner, and M. Streit, “Thermalplot: Visualizing multi-attribute time-series data using a thermal metaphor,” IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 12, pp. 2594–2607, 2016.
  42. P. M. Simon and C. Turkay, “Hunting high and low: Visualising shifting correlations in financial markets,” Computer Graphics Forum, vol. 37, no. 3, pp. 479–490, 2018.
  43. R. A. Leite, T. Gschwandtner, S. Miksch, E. Gstrein, and J. Kuntner, “Neva: Visual analytics to identify fraudulent networks,” Computer Graphics Forum, vol. 39, no. 6, pp. 344–359, 2020.
  44. Z. Niu, R. Li, J. Wu, D. Cheng, and J. Zhang, “iConViz: Interactive visual exploration of the default contagion risk of networked-guarantee loans,” in Proc. VAST.   Los Alamitos: IEEE, 2020, pp. 84–94.
  45. R. C. Basole, T. Major, and A. Srinivasan, “Understanding alliance portfolios using visual analytics,” ACM Trans. Manage. Inf. Syst., vol. 8, no. 4, aug 2017.
  46. R. C. Basole, A. Srinivasan, H. Park, and S. Patel, “Ecoxight: Discovery, exploration, and analysis of business ecosystems using interactive visualization,” ACM Trans. Manage. Inf. Syst., vol. 9, no. 2, Apr. 2018.
  47. H. Wang et al., “A visual analytics framework for spatiotemporal trade network analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 331–341, 2019.
  48. X. Yue et al., “BitExTract: Interactive visualization for extracting bitcoin exchange intelligence,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp. 162–171, 2019.
  49. T. Munzner, “A nested model for visualization design and validation,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 921–928, 2009.
  50. Y. Liu, L. He, D. Li, X. Luo, G. Peng, X. Fan, and G. Sun, “Correlation analysis of chinese pork concept stocks based on big data,” in Artificial Intelligence and Security.   Cham: Springer, 2020, pp. 475–486.
  51. “Tushare financial big data community,” \hrefhttps://tushare.pro/https://tushare.pro/.
  52. X. Guo, H. Zhang, and T. Tian, “Development of stock correlation networks using mutual information and financial big data,” PLOS ONE, vol. 13, no. 4, pp. 1–16, 04 2018.
  53. M. Gleicher, “Considerations for visualizing comparison,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 413–423, 2018.
  54. T. Aste, W. Shaw, and T. D. Matteo, “Correlation structure and dynamics in volatile markets,” New Journal of Physics, vol. 12, no. 8, p. 085009, aug 2010.
  55. B. Podobnik, D. Horvatic, A. M. Petersen, and H. E. Stanley, “Cross-correlations between volume change and price change,” PNAS, vol. 106, no. 52, pp. 22 079–22 084, 2009.
  56. R. Eisinga, M. t. Grotenhuis, and B. Pelzer, “The reliability of a two-item scale: Pearson, cronbach, or spearman-brown?” International Journal of Public Health, vol. 58, no. 4, pp. 637–642, Aug 2013.
  57. L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.
  58. F. McGee, M. Ghoniem, G. Melançon, B. Otjacques, and B. Pinaud, “The state of the art in multilayer network visualization,” Computer Graphics Forum, vol. 38, no. 6, pp. 125–149, 2019.
  59. Q. Shen et al., “Nameclarifier: A visual analytics system for author name disambiguation,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 141–150, 2017.
  60. H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-view clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1116–1129, 2020.
  61. M.-S. Chen et al., “Representation learning in multi-view clustering: A literature review,” Data Science and Engineering, vol. 7, no. 3, pp. 225–241, 2022.
  62. M. Loretan and W. B. English, “Evaluating correlation breakdowns during periods of market volatility,” Available at SSRN 231857, 2000.
  63. A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “Upset: Visualization of intersecting sets,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1983–1992, 2014.
  64. M. Tumminello, F. Lillo, and R. N. Mantegna, “Correlation, hierarchies, and networks in financial markets,” Journal of Economic Behavior & Organization, vol. 75, no. 1, pp. 40–58, 2010.
  65. R. Ball and P. Brown, “Portfolio theory and accounting,” Journal of Accounting Research, vol. 7, no. 2, pp. 300–323, 1969.
  66. W. Zhang, W. Kam-Kwai, Y. Chen, A. Jia, L. Wang, J.-W. Zhang, L. Cheng, and W. Chen, “Scrolltimes: Tracing the provenance of paintings as a window into history,” IEEE Transactions on Visualization and Computer Graphics, 2024, to appear.
  67. M. Sips, P. Köthur, A. Unger, H. Hege, and D. Dransch, “A visual analytics approach to multiscale exploration of environmental time series,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2899–2907, 2012.
  68. L. Yang, C. Xiong, W. Kam-Kwai, A. Wu, and H. Qu, “Explaining with examples lessons learned from crowdsourced introductory description of information visualizations,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 3, pp. 1638–1650, 2023.
  69. Y. Feng, X. Wang, W. Kam-Kwai, S. Wang, Y. Lu, M. Zhu, B. Wang, and W. Chen, “Promptmagician: Interactive prompt engineering for text-to-image creation,” IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, pp. 295–305, 2024.
  70. Y. Feng, X. Wang, B. Pan, W. Kam-Kwai, Y. Ren, S. Liu, Z. Yan, Y. Ma, H. Qu, and W. Chen, “Xnli: Explaining and diagnosing nli-based visual data analysis,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–14, 2023.
  71. M. Bostock, V. Ogievetsky, and J. Heer, “D³ data-driven documents,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301–2309, 2011.
  72. J. He, X. Wang, W. Kam-Kwai, X. Huang, C. Chen, Z. Chen, F. Wang, M. Zhu, and H. Qu, “Videopro: A visual analytics approach for interactive video programming,” IEEE Transactions on Visualization and Computer Graphics, vol. 30, no. 1, pp. 87–97, 2024.
Citations (2)

Summary

We haven't generated a summary for this paper yet.