Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derivative sampling expansions in shift-invariant spaces with error estimates covering discontinuous signals (2402.08977v1)

Published 14 Feb 2024 in math.FA, cs.IT, and math.IT

Abstract: This paper is concerned with the problem of sampling and interpolation involving derivatives in shift-invariant spaces and the error analysis of the derivative sampling expansions for fundamentally large classes of functions. A new type of polynomials based on derivative samples is introduced, which is different from the Euler-Frobenius polynomials for the multiplicity $r>1$. A complete characterization of uniform sampling with derivatives is given using Laurent operators. The rate of approximation of a signal (not necessarily continuous) by the derivative sampling expansions in shift-invariant spaces generated by compactly supported functions is established in terms of $Lp$- average modulus of smoothness. Finally, several typical examples illustrating the various problems are discussed in detail.

Citations (1)

Summary

We haven't generated a summary for this paper yet.