A two-stage solution to quantum process tomography: error analysis and optimal design (2402.08952v1)
Abstract: Quantum process tomography is a critical task for characterizing the dynamics of quantum systems and achieving precise quantum control. In this paper, we propose a two-stage solution for both trace-preserving and non-trace-preserving quantum process tomography. Utilizing a tensor structure, our algorithm exhibits a computational complexity of $O(MLd2)$ where $d$ is the dimension of the quantum system and $ M $, $ L $ represent the numbers of different input states and measurement operators, respectively. We establish an analytical error upper bound and then design the optimal input states and the optimal measurement operators, which are both based on minimizing the error upper bound and maximizing the robustness characterized by the condition number. Numerical examples and testing on IBM quantum devices are presented to demonstrate the performance and efficiency of our algorithm.
- D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, no. 5234, pp. 255–261, 1995.
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, p. 165, 2007.
- M.-H. Hsieh and M. M. Wilde, “Trading classical communication, quantum communication, and entanglement in quantum Shannon theory,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4705–4730, 2010.
- C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Reviews of Modern Physics, vol. 89, p. 035002, 2017.
- D. Dong and I. R. Petersen, “Quantum control theory and applications: a survey,” IET Control Theory & Applications, vol. 4, no. 12, pp. 2651–2671, 2010.
- D. Dong and I. R. Petersen, “Quantum estimation, control and learning: Opportunities and challenges,” Annual Reviews in Control, vol. 54, pp. 243–251, 2022.
- D. Dong and I. R. Petersen, Learning and Robust Control in Quantum Technology. Springer Nature Switzerland AG, 2023.
- D. Burgarth and K. Yuasa, “Quantum system identification,” Physical Review Letters, vol. 108, p. 080502, 2012.
- A. Sone and P. Cappellaro, “Hamiltonian identifiability assisted by a single-probe measurement,” Physical Review A, vol. 95, p. 022335, 2017.
- Y. Wang, D. Dong, A. Sone, I. R. Petersen, H. Yonezawa, and P. Cappellaro, “Quantum Hamiltonian identifiability via a similarity transformation approach and beyond,” IEEE Transactions on Automatic Control, vol. 65, no. 11, pp. 4632–4647, 2020.
- J. Zhang and M. Sarovar, “Quantum Hamiltonian identification from measurement time traces,” Physical Review Letters, vol. 113, p. 080401, 2014.
- Y. Wang, D. Dong, B. Qi, J. Zhang, I. R. Petersen, and H. Yonezawa, “A quantum Hamiltonian identification algorithm: Computational complexity and error analysis,” IEEE Transactions on Automatic Control, vol. 63, no. 5, pp. 1388–1403, 2018.
- C. H. Baldwin, A. Kalev, and I. H. Deutsch, “Quantum process tomography of unitary and near-unitary maps,” Physical Review A, vol. 90, p. 012110, 2014.
- M. Zorzi, F. Ticozzi, and A. Ferrante, “Minimal resources identifiability and estimation of quantum channels,” Quantum Information Processing, vol. 13, no. 3, pp. 683–707, 2014.
- M. Zorzi, F. Ticozzi, and A. Ferrante, “Estimation of quantum channels: Identifiability and ML methods,” in 2012 51st IEEE Conference on Decision and Control (CDC), pp. 1674–1679, 2012.
- G. C. Knee, E. Bolduc, J. Leach, and E. M. Gauger, “Quantum process tomography via completely positive and trace-preserving projection,” Physical Review A, vol. 98, p. 062336, 2018.
- T. Surawy-Stepney, J. Kahn, R. Kueng, and M. Guţă, “Projected least-squares quantum process tomography,” Quantum, vol. 6, p. 844, 2022.
- Z. Ji, G. Wang, R. Duan, Y. Feng, and M. Ying, “Parameter estimation of quantum channels,” IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5172–5185, 2008.
- J. Zhang and M. Sarovar, “Identification of open quantum systems from observable time traces,” Physical Review A, vol. 91, no. 5, p. 052121, 2015.
- M. Guţă and N. Yamamoto, “System identification for passive linear quantum systems,” IEEE Transactions on Automatic Control, vol. 61, no. 4, pp. 921–936, 2016.
- X.-L. Huang, J. Gao, Z.-Q. Jiao, Z.-Q. Yan, Z.-Y. Zhang, D.-Y. Chen, X. Zhang, L. Ji, and X.-M. Jin, “Reconstruction of quantum channel via convex optimization,” Science Bulletin, vol. 65, no. 4, pp. 286–292, 2020.
- I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, and P. Mataloni, “Experimental quantum process tomography of non-trace-preserving maps,” Physical Review A, vol. 82, p. 042307, 2010.
- G. A. White, C. D. Hill, F. A. Pollock, L. C. Hollenberg, and K. Modi, “Demonstration of non-Markovian process characterisation and control on a quantum processor,” Nature Communications, vol. 11, p. 6301, 2020.
- G. A. White, F. A. Pollock, L. C. Hollenberg, K. Modi, and C. D. Hill, “Non-markovian quantum process tomography,” PRX Quantum, vol. 3, p. 020344, 2022.
- H. Wang, W. Zheng, N. Yu, K. Li, D. Lu, T. Xin, C. Li, Z. Ji, D. Kribs, B. Zeng, X. Peng, and J. Du, “Quantum state and process tomography via adaptive measurements,” Science China Physics, Mechanics & Astronomy, vol. 59, no. 10, p. 100313, 2016.
- Y. S. Teo, B.-G. Englert, J. Řeháček, and Z. Hradil, “Adaptive schemes for incomplete quantum process tomography,” Physical Review A, vol. 84, p. 062125, 2011.
- I. A. Pogorelov, G. I. Struchalin, S. S. Straupe, I. V. Radchenko, K. S. Kravtsov, and S. P. Kulik, “Experimental adaptive process tomography,” Physical Review A, vol. 95, p. 012302, 2017.
- I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
- J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: The two-bit quantum gate,” Physical Review Letters, vol. 78, pp. 390–393, 1997.
- J. Fiurášek and Z. Hradil, “Maximum-likelihood estimation of quantum processes,” Physical Review A, vol. 63, p. 020101, 2001.
- S. Xiao, Y. Wang, D. Dong, and J. Zhang, “Optimal and two-step adaptive quantum detector tomography,” Automatica, vol. 141, p. 110296, 2022.
- R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012.
- J. Watrous, The Theory of Quantum Information. Cambridge University Press, 2018.
- D. W. Leung, “Choi’s proof as a recipe for quantum process tomography,” Journal of Mathematical Physics, vol. 44, no. 2, pp. 528–533, 2003.
- G. M. D’Ariano and P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Physical Review Letters, vol. 86, pp. 4195–4198, 2001.
- J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White, “Ancilla-assisted quantum process tomography,” Physical Review Letters, vol. 90, p. 193601, 2003.
- G. M. D’Ariano and P. Lo Presti, “Imprinting complete information about a quantum channel on its output state,” Physical Review Letters, vol. 91, p. 047902, 2003.
- M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Physical Review Letters, vol. 97, p. 170501, 2006.
- M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics: General theory,” Physical Review A, vol. 75, p. 062331, 2007.
- Z.-W. Wang, Y.-S. Zhang, Y.-F. Huang, X.-F. Ren, and G.-C. Guo, “Experimental realization of direct characterization of quantum dynamics,” Physical Review A, vol. 75, p. 044304, 2007.
- M. Mohseni, A. T. Rezakhani, and D. A. Lidar, “Quantum-process tomography: Resource analysis of different strategies,” Physical Review A, vol. 77, p. 032322, 2008.
- M. Zorzi, F. Ticozzi, and A. Ferrante, “Minimum relative entropy for quantum estimation: Feasibility and general solution,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 357–367, 2014.
- J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, “Sample-optimal tomography of quantum states,” IEEE Transactions on Information Theory, vol. 63, no. 9, pp. 5628–5641, 2017.
- M. Berta, J. M. Renes, and M. M. Wilde, “Identifying the information gain of a quantum measurement,” IEEE Transactions on Information Theory, vol. 60, no. 12, pp. 7987–8006, 2014.
- B. Qi, Z. Hou, L. Li, D. Dong, G.-Y. Xiang, and G.-C. Guo, “Quantum state tomography via linear regression estimation,” Scientific Reports, vol. 3, p. 3496, 2013.
- B. Mu, H. Qi, I. R. Petersen, and G. Shi, “Quantum tomography by regularized linear regressions,” Automatica, vol. 114, p. 108837, 2020.
- J. A. Smolin, J. M. Gambetta, and G. Smith, “Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise,” Physical Review Letters, vol. 108, p. 070502, 2012.
- Springer, 2018.
- S. Xiao, Y. Wang, D. Dong, and J. Zhang, “Optimal quantum detector tomography via linear regression estimation,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 4140–4145, 2021.
- R. B. A. Adamson and A. M. Steinberg, “Improving quantum state estimation with mutually unbiased bases,” Physical Review Letters, vol. 105, p. 030406, 2010.
- T. Durt, B.-G. Englert, I. Bengtsson, and K. Życzkowski, “On mutually unbiased bases,” International Journal of Quantum Information, vol. 08, no. 04, pp. 535–640, 2010.
- J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric informationally complete quantum measurements,” Journal of Mathematical Physics, vol. 45, no. 6, pp. 2171–2180, 2004.
- A. Miranowicz, K. Bartkiewicz, J. Peřina, M. Koashi, N. Imoto, and F. Nori, “Optimal two-qubit tomography based on local and global measurements: Maximal robustness against errors as described by condition numbers,” Physical Review A, vol. 90, p. 062123, 2014.
- J. A. Miszczak, “Generating and using truly random quantum states in Mathematica,” Computer Physics Communications, vol. 183, no. 1, pp. 118–124, 2012.
- N. Johnston, “QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9,” Jan. 2016.
- Y. Wang, S. Yokoyama, D. Dong, I. R. Petersen, E. H. Huntington, and H. Yonezawa, “Two-stage estimation for quantum detector tomography: Error analysis, numerical and experimental results,” IEEE Transactions on Information Theory, vol. 67, no. 4, pp. 2293–2307, 2021.
- M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C. Sanders, and A. I. Lvovsky, “Complete characterization of quantum-optical processes,” Science, vol. 322, no. 5901, pp. 563–566, 2008.
- S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I. Lvovsky, and B. C. Sanders, “Quantum process tomography with coherent states,” New Journal of Physics, vol. 13, no. 1, p. 013006, 2011.
- M. D. de Burgh, N. K. Langford, A. C. Doherty, and A. Gilchrist, “Choice of measurement sets in qubit tomography,” Physical Review A, vol. 78, p. 052122, 2008.
- “IBM Quantum.” https://quantum-computing.ibm.com, 2021.
- A. Dang, G. A. White, L. C. Hollenberg, and C. D. Hill, “Process tomography on a 7-qubit quantum processor via tensor network contraction path finding,” arXiv preprint arXiv:2112.06364, 2021.
- G. Gutoski and N. Johnston, “Process tomography for unitary quantum channels,” Journal of Mathematical Physics, vol. 55, no. 3, p. 032201, 2014.
- Y. Wang, Q. Yin, D. Dong, B. Qi, I. R. Petersen, Z. Hou, H. Yonezawa, and G.-Y. Xiang, “Quantum gate identification: Error analysis, numerical results and optical experiment,” Automatica, vol. 101, pp. 269–279, 2019.
- B. Qi, Z. Hou, Y. Wang, D. Dong, H.-S. Zhong, L. Li, G.-Y. Xiang, H. M. Wiseman, C.-F. Li, and G.-C. Guo, “Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment,” npj Quantum Information, vol. 3, p. 19, 2017.
- M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.
- M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control (V. Blondel, S. Boyd, and H. Kimura, eds.), Lecture Notes in Control and Information Sciences, pp. 95–110, Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.
- D. A. Lidar, P. Zanardi, and K. Khodjasteh, “Distance bounds on quantum dynamics,” Physical Review A, vol. 78, p. 012308, 2008.
- R. Bhatia, Perturbation Bounds for Matrix Eigenvalues. Society for Industrial and Applied Mathematics, 2007.
- I. Bengtsson, “From SICs and MUBs to Eddington,” Journal of Physics: Conference Series, vol. 254, p. 012007, 2010.