Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase transition to turbulence via moving fronts (2402.08829v3)

Published 13 Feb 2024 in physics.flu-dyn

Abstract: Directed percolation (DP), a universality class of continuous phase transitions, has recently been established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or planar flows, the transition occurs via discrete large-scale turbulent structures, known as puffs in pipe flow or bands in planar flows, which either self-replicate or laminarize. However, these processes might not be universal to all subcritical shear flows. Here, we design a numerical experiment that eliminates discrete structures in plane Couette flow and show that it follows a different, simpler transition scenario: turbulence proliferates via expanding fronts and decays via spontaneous creation of laminar zones. We map this phase transition onto a stochastic one-variable system. The level of turbulent fluctuations dictates whether moving-front transition is discontinuous, or continuous and within the DP universality class, with profound implications for other hydrodynamic systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Y. Pomeau, Physica D 23, 3 (1986).
  2. P. Grassberger, in Nonlinear Phenomena in Chemical Dynamics (Springer, 1981) p. 262.
  3. H.-K. Janssen, Z. Phys. B 42, 151 (1981).
  4. F. Waleffe, Phys. Fluids 9, 883 (1997).
  5. D. Barkley and L. S. Tuckerman, Phys. Rev. Lett. 94, 014502 (2005).
  6. D. Coles and C. van Atta, AIAA Journal 4, 1969 (1966).
  7. I. J. Wygnanski and F. Champagne, J. Fluid Mech. 59, 281 (1973).
  8. D. Barkley and L. S. Tuckerman, J. Fluid Mech. 576, 109 (2007).
  9. Y. Duguet and P. Schlatter, Phys. Rev. Lett. 110, 034502 (2013).
  10. M. Couliou and R. Monchaux, Phys. Fluids 27, 034101 (2015).
  11. C. W. van Doorne and J. Westerweel, Philos. Trans. R. Soc. A 367, 489 (2009).
  12. D. Barkley, Phys. Rev. E 84, 016309 (2011a).
  13. D. Barkley, J. Fluid Mech. 803, P1 (2016).
  14. S. J. Benavides and D. Barkley, arXiv:2309.12879  (2023).
  15. D. Barkley, J. Phys.: Conf. Ser. 318, 032001 (2011b).
  16. J. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, H. Schrobsdorff, M. Farano, A. Yesil, S. Schütz, M. Culpo,  and T. Schneider, “Channelflow 2.0,”  (2019), manuscript in preparation, see channelflow.ch.
  17. Y. Pomeau, Comptes Rendus Mécanique 343, 210 (2015).
  18. M. A. Munoz, Phys. Rev. E 57, 1377 (1998).
  19. M. A. Munoz and R. Pastor-Satorras, Phys. Rev. Lett. 90, 204101 (2003).
  20. M. A. Munoz, arXiv:cond-mat/0303650  (2003).
  21. J. F. Gibson, Channelflow: A Spectral Navier-Stokes Simulator in C++, Tech. Rep. (University of New Hampshire, 2012) see Channelflow.org.
  22. J. Jiménez and A. Pinelli, J. Fluid Mech. 389, 335 (1999).
  23. J. Jimenez, arXiv:2202.09814  (2022).
  24. W. Van Saarloos, Physics Reports 386, 29 (2003).
  25. H. Hinrichsen, Advances in Physics 49, 815 (2000).
Citations (1)

Summary

We haven't generated a summary for this paper yet.