Phase transition to turbulence via moving fronts (2402.08829v3)
Abstract: Directed percolation (DP), a universality class of continuous phase transitions, has recently been established as a possible route to turbulence in subcritical wall-bounded flows. In canonical straight pipe or planar flows, the transition occurs via discrete large-scale turbulent structures, known as puffs in pipe flow or bands in planar flows, which either self-replicate or laminarize. However, these processes might not be universal to all subcritical shear flows. Here, we design a numerical experiment that eliminates discrete structures in plane Couette flow and show that it follows a different, simpler transition scenario: turbulence proliferates via expanding fronts and decays via spontaneous creation of laminar zones. We map this phase transition onto a stochastic one-variable system. The level of turbulent fluctuations dictates whether moving-front transition is discontinuous, or continuous and within the DP universality class, with profound implications for other hydrodynamic systems.
- Y. Pomeau, Physica D 23, 3 (1986).
- P. Grassberger, in Nonlinear Phenomena in Chemical Dynamics (Springer, 1981) p. 262.
- H.-K. Janssen, Z. Phys. B 42, 151 (1981).
- F. Waleffe, Phys. Fluids 9, 883 (1997).
- D. Barkley and L. S. Tuckerman, Phys. Rev. Lett. 94, 014502 (2005).
- D. Coles and C. van Atta, AIAA Journal 4, 1969 (1966).
- I. J. Wygnanski and F. Champagne, J. Fluid Mech. 59, 281 (1973).
- D. Barkley and L. S. Tuckerman, J. Fluid Mech. 576, 109 (2007).
- Y. Duguet and P. Schlatter, Phys. Rev. Lett. 110, 034502 (2013).
- M. Couliou and R. Monchaux, Phys. Fluids 27, 034101 (2015).
- C. W. van Doorne and J. Westerweel, Philos. Trans. R. Soc. A 367, 489 (2009).
- D. Barkley, Phys. Rev. E 84, 016309 (2011a).
- D. Barkley, J. Fluid Mech. 803, P1 (2016).
- S. J. Benavides and D. Barkley, arXiv:2309.12879 (2023).
- D. Barkley, J. Phys.: Conf. Ser. 318, 032001 (2011b).
- J. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, H. Schrobsdorff, M. Farano, A. Yesil, S. Schütz, M. Culpo, and T. Schneider, “Channelflow 2.0,” (2019), manuscript in preparation, see channelflow.ch.
- Y. Pomeau, Comptes Rendus Mécanique 343, 210 (2015).
- M. A. Munoz, Phys. Rev. E 57, 1377 (1998).
- M. A. Munoz and R. Pastor-Satorras, Phys. Rev. Lett. 90, 204101 (2003).
- M. A. Munoz, arXiv:cond-mat/0303650 (2003).
- J. F. Gibson, Channelflow: A Spectral Navier-Stokes Simulator in C++, Tech. Rep. (University of New Hampshire, 2012) see Channelflow.org.
- J. Jiménez and A. Pinelli, J. Fluid Mech. 389, 335 (1999).
- J. Jimenez, arXiv:2202.09814 (2022).
- W. Van Saarloos, Physics Reports 386, 29 (2003).
- H. Hinrichsen, Advances in Physics 49, 815 (2000).