Remarks on MacMahon's $q$-series (2402.08783v2)
Abstract: In his important 1920 paper on partitions, MacMahon defined the partition generating functions \begin{align*} A_k(q)=\sum_{n=1}{\infty}\mathfrak{m}(k;n)qn&:=\sum_{0< s_1<s_2<\cdots<s_k} \frac{q{s_1+s_2+\cdots+s_k}}{(1-q{s_1})2(1-q{s_2})2\cdots(1-q{s_k})2},\ C_k(q)=\sum_{n=1}{\infty} \mathfrak{m}{odd}(k;n)qn&:=\sum{0< s_1<s_2<\cdots<s_k} \frac{q{2s_1+2s_2+\cdots+2s_k-k}}{(1-q{2s_1-1})2(1-q{2s_2-1})2\cdots(1-q{2s_k-1})2}. \end{align*} These series give infinitely many formulas for two prominent generating functions. For each non-negative $k$, we prove that $A_k(q), A_{k+1}(q), A_{k+2}(q),\dots$ (resp. $C_k(q), C_{k+1}(q), C_{k+2}(q),\dots$) give the generating function for the 3-colored partition function $p_3(n)$ (resp. the overpartition function $\overline{p}(n)$).