Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Linear-quadratic optimal control for abstract differential-algebraic equations (2402.08762v2)

Published 13 Feb 2024 in math.OC

Abstract: In this paper, we extend a classical approach to linear quadratic (LQ) optimal control via Popov operators to abstract linear differential-algebraic equations (ADAEs) in Hilbert spaces. To ensure existence of solutions, we assume that the underlying differential-algebraic equation has index one in the pseudo-resolvent sense. This leads to the existence of a degenerate semigroup that can be used to define a Popov operator for our system. It is shown that under a suitable coercivity assumption for the Popov operator the optimal costs can be described by a bounded Riccati operator and that the optimal control input is of feedback form. Furthermore, we characterize exponential stability of ADAEs which is required to solve the infinite horizon LQ problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Vector-valued Laplace Transforms and Cauchy Problems, 2nd edition, volume 96 of Monographs in Mathematics. Birkhäuser, Basel, 2011.
  2. W. Arendt. Approximation of degenerate semigroups. Taiwanese J. Math, 5(2):279–295, 2001.
  3. T. Berger and T. Reis. Controllability of linear differential-algebraic systems - a survey. In A. Ilchmann and T. Reis, editors, Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, pages 1–69. Springer, Berlin/Heidelberg, 2013.
  4. A. Favini and A. Yagi. Degenerate differential equations on Banach spaces. Marcel Dekker, New York, 1999.
  5. H. Gernandt and T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations, 2023. arXiv:2312.02303v1.
  6. B. Jacob and K. A. Morris. On solvability of dissipative partial differential-algebraic equations. IEEE Control Systems Letters, 6:3188–3193, 2022.
  7. B. Jacob and H. Zwart. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, volume 223 of Operator Theory: Advances and Applications. Birkhäuser, 2012.
  8. T. Kato. Remarks on pseudo-resolvents and infinitesimal generators of semi-groups. Proceedings of the Japan Academy, 35(8):467 – 468, 1959.
  9. V. L. Mehrmann. The autonomous linear quadratic control problem: theory and numerical solution. Springer, 1991.
  10. V. Mehrmann and H. Zwart. Abstract dissipative Hamiltonian differential-algebraic equations are everywhere. arXiv:2311.03091, 2023.
  11. R. Rebarber. Conditions for the equivalence of internal and external stability of distributed parameter systems. IEEE Trans. Autom. Control, 38:994–998, 1993.
  12. T. Reis. Systems Theoretic Aspects of PDAEs and Applications to Electrical Circuits. Doctoral dissertation, Fachbereich Mathematik, Technische Universität Kaiserslautern, Kaiserslautern, 2006.
  13. T. Reis. Consistent initialization and perturbation analysis for abstract differential-algebraic equations. Math. Control Signals Systems, 19(3):255–281, 2007.
  14. T. Reis and C. Tischendorf. Frequency domain methods and decoupling of linear infinite dimensional differential algebraic systems. Journal of Evolution equation, 5(3):357–385, 2005.
  15. T. Reis and M. Voigt. Linear-quadratic optimal control of differential-algebraic systems: the infinite time horizon problem with zero terminal state. SIAM Journal on Control and Optimization, 57(3):1567–1596, 2019.
  16. M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Springer Science & Business Media, 2009.
  17. G. Weiss. Representation of shift-invariant operators on L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT by H∞superscript𝐻H^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT transfer functions: An elementary proof, a generalization to Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT, and a counterexample for L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT. Math. Control Signal Systems, 4:193–203, 1991.
  18. M. Weiss and G. Weiss. Optimal control of stable weakly regular linear systems. Math. Control Signal Systems, 266(10):287–330, 1997.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube