Algebraization Techniques and Rigid-Analytic Artin-Grothendieck Vanishing (2402.08741v2)
Abstract: First, we prove an algebraization result for rig-smooth algebras over a general noetherian ring; this positively answers the question raised in [Sta24, Tag 0GAX]. Then we prove a general partial algebraization result in non-archimedean geometry. The result says that we can always algebraize a geometrically reduced affinoid rigid-analytic space in "one direction" in an appropriate sense. As an application of this result, we show the remaining cases of the Artin-Grothendieck Vanishing for affinoid algebras, which were previously conjectured in [BM21, {\S}7]. This allows us to deduce a stronger version of the rigid-analytic Artin-Grothendieck Vanishing Conjecture (see [Han20, Conj. 1.2]) over a field of characteristic 0. Using a completely different set of ideas, we also obtain a weaker version of this conjecture over a field of characteristic p>0.
- The six-functor formalism for rigid analytic motives. Forum Math. Sigma, 10:Paper No. e61, 182, 2022.
- A Luna étale slice theorem for algebraic stacks. Ann. of Math. (2), 191(3):675–738, 2020.
- V. Alexeev. Complete moduli in the presence of semiabelian group action. Ann. of Math. (2), 155(3):611–708, 2002.
- Geometric arcs and fundamental groups of rigid spaces. J. Reine Angew. Math., 799:57–107, 2023.
- M. Artin. Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math., (36):23–58, 1969.
- M. Artin. Algebraization of formal moduli. I. In Global Analysis (Papers in Honor of K. Kodaira), pages 21–71. Univ. Tokyo Press, Tokyo, 1969.
- M. Artin. Algebraization of formal moduli. II. Existence of modifications. Ann. of Math. (2), 91:88–135, 1970.
- V. G. Berkovich. Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math., (78):5–161 (1994), 1993.
- V. G. Berkovich. Vanishing cycles for formal schemes. II. Invent. Math., 125(2):367–390, 1996.
- V. Berkovich. Finiteness theorems for vanishing cycles of formal schemes. Israel J. Math., 210(1):147–191, 2015.
- Non-Archimedean analysis, volume 261 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry.
- B. Bhatt and D. Hansen. The six functors for Zariski-constructible sheaves in rigid geometry. Compos. Math., 158(2):437–482, 2022.
- B. Bhatt and J. Lurie. A p𝑝pitalic_p-adic riemann-hilbert functor: torsion coefficients (in preparation).
- Formal and rigid geometry. III. The relative maximum principle. Math. Ann., 302(1):1–29, 1995.
- Formal and rigid geometry. IV. The reduced fibre theorem. Invent. Math., 119(2):361–398, 1995.
- B. Bhatt and A. Mathew. The arc-topology. Duke Math. J., 170(9):1899–1988, 2021.
- S. Bosch. Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
- N. Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998.
- B. Bhatt and P. Scholze. Prisms and prismatic cohomology. Ann. of Math. (2), 196(3):1135–1275, 2022.
- A. Bouthier and K. Česnavičius. Torsors on loop groups and the Hitchin fibration. Ann. Sci. Éc. Norm. Supér. (4), 55(3):791–864, 2022.
- R. Cass. Perverse 𝐅psubscript𝐅𝑝\mathbf{F}_{p}bold_F start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-sheaves on the affine Grassmannian. J. Reine Angew. Math., 785:219–272, 2022.
- B. Conrad. Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble), 49(2):473–541, 1999.
- A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math., (20):259, 1964.
- R. Elkik. Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4), 6:553–603 (1974), 1973.
- Fundamental algebraic geometry, volume 123 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA explained.
- On hausdorff completions of commutative rings in rigid geometry. Journal Of Algebra, 332:293–321, 2011.
- K. Fujiwara and F. Kato. Foundations of rigid geometry. I. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2018.
- K. Fujiwara. Theory of tubular neighborhood in étale topology. Duke Math. J., 80(1):15–57, 1995.
- O. Gabber. Notes on some t𝑡titalic_t-structures. In Geometric aspects of Dwork theory. Vol. II, pages 711–734. Walter de Gruyter, Berlin, 2004. URL www.ihes.fr/~/gabber/t-str.pdf.
- O. Gabber and L. Ramero. Almost Ring Theory. Lecture Notes in Mathematics. Springer, 2003.
- O. Gabber and L. Ramero. Foundations for almost ring theory – release 7.5. https://arxiv.org/abs/math/0409584, 2018.
- D. Hansen. Vanishing and comparison theorems in rigid analytic geometry. Compos. Math., 156(2), 2020.
- M. Hochster and C. Huneke. Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Amer. Math. Soc., 3(1):31–116, 1990.
- R. Huber. Continuous valuations. Math. Z., 212(3):455–477, 1993.
- R. Huber. A generalization of formal schemes and rigid analytic varieties. Math. Z., 217(4):513–551, 1994.
- R. Huber. Étale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig, 1996.
- R. Huber. Swan representations associated with rigid analytic curves. J. Reine Angew. Math., 537:165–234, 2001.
- Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Société Mathématique de France, Paris, 2014.
- R. Kiehl. Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie. J. Reine Angew. Math., 234:89–98, 1969.
- L. Moret-Bailly. A henselian preparation theorem. Israel J. Math., 257(2):519–531, 2023.
- P. Scholze. étale cohomology of diamonds. https://arxiv.org/abs/1709.07343, 2017.
- T. L. Seminar authors. Stanford learning seminar. http://virtualmath1.stanford.edu/~conrad/Perfseminar/, 2014–2015.
- Théorie des topos et cohomologie étale des schémas I, II𝐼𝐼IIitalic_I italic_I, III𝐼𝐼𝐼IIIitalic_I italic_I italic_I. Lecture Notes in Mathematics, Vol. 269, 270, 305. Springer-Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964.
- P. Deligne. Cohomologie étale, volume 569 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1977. Séminaire de géométrie algébrique du Bois-Marie SGA 4124124\frac{1}{2} 4 divide start_ARG 1 end_ARG start_ARG 2 end_ARG.
- A. Grothendieck. Cohomologie l𝑙litalic_l-adique et fonctions L𝐿Litalic_L. Lecture Notes in Mathematics, Vol. 589. Springer-Verlag, Berlin-New York, 1977. Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Edité par Luc Illusie.
- T. Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2024.
- M. Temkin. Desingularization of quasi-excellent schemes in characteristic zero. Adv. Math., 219(2):488–522, 2008.
- M. Temkin. Altered local uniformization of Berkovich spaces. Israel J. Math., 221(2):585–603, 2017.
- B. Zavyalov. Almost coherent modules and almost coherent sheaves. https://arxiv.org/abs/2110.10773, 2021.
- B. Zavyalov. Mod-p𝑝pitalic_p poincaré duality in p𝑝pitalic_p-adic analytic geometry. arXiv, 2021. URL https://arxiv.org/abs/2111.01830.
- B. Zavyalov. Poincaré duality in abstract 6666-functor formalisms. https://arxiv.org/abs/2301.03821, 2023.
- B. Zavyalov. Quotients of admissible formal schemes and adic spaces by finite groups. Algebra Number Theory, 18(3):409–475, 2024.