Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SEASONS: Signal and Energy Aware Sensing on iNtermittent Systems (2402.08739v1)

Published 13 Feb 2024 in eess.SY and cs.SY

Abstract: Both energy-aware, batteryless intermittent systems and signal-aware adaptive sampling algorithms (ASA) aim to maximize sensor data accuracy under energy constraints in edge devices. Intuitively, combining both into a signal- & energy-aware solution would yield even better accuracy. Unfortunately, ASAs and intermittent systems rely on conflicting energy availability assumptions. So, a straightforward combination cannot achieve their combined benefits. Therefore, we propose SEASONS, the first framework for signal- and energy-aware intermittent systems. SEASONS buffers signal data in time, monitoring queue dynamics to ensure the data is reported within a user-specified latency constraint. SEASONS improves sensor data accuracy by 31% without increasing energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic and reactive intermittent execution,” ser. PLDI 2020, 2020.
  2. B. Lucia and B. Ransford, “A simpler, safer programming and execution model for intermittent systems,” ser. PLDI ’15, 2015.
  3. H. Desai, M. Nardello, D. Brunelli, and B. Lucia, “Camaroptera: A long-range image sensor with local inference for remote sensing applications,” ACM Trans. Embed. Comput. Syst., 2022.
  4. A. Colin and B. Lucia, “Chain: Tasks and channels for reliable intermittent programs,” ser. OOPSLA 2016, 2016.
  5. G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge: Inference on intermittent embedded systems,” ser. ASPLOS ’19, 2019.
  6. J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently powered batteryless sensors,” ser. SenSys ’17, 2017.
  7. K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” ser. SenSys ’18, 2018.
  8. B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constellations as a new class of computer system,” ser. ASPLOS ’20, 2020.
  9. M. Afanasov, N. A. Bhatti, D. Campagna, G. Caslini, F. M. Centonze, K. Dolui, A. Maioli, E. Barone, M. H. Alizai, J. H. Siddiqui, and L. Mottola, “Battery-less zero-maintenance embedded sensing at the mithræum of circus maximus,” ser. SenSys ’20, 2020.
  10. A. Bakar, A. G. Ross, K. S. Yildirim, and J. Hester, “Rehash: A flexible, developer focused, heuristic adaptation platform for intermittently powered computing,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2021.
  11. D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during intermittent supply for energy-harvesting systems,” IEEE Embedded Systems Letters, 2015.
  12. J. M. C. Silva, K. A. Bispo, P. Carvalho, and S. R. Lima, “Litesense: An adaptive sensing scheme for wsns,” in 2017 IEEE Symposium on Computers and Communications (ISCC), 2017.
  13. S. Chatterjea and P. Havinga, “An adaptive and autonomous sensor sampling frequency control scheme for energy-efficient data acquisition in wireless sensor networks,” in Distributed Computing in Sensor Systems, S. E. Nikoletseas, B. S. Chlebus, D. B. Johnson, and B. Krishnamachari, Eds.   Springer Berlin Heidelberg, 2008.
  14. C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri, “Adaptive sampling for energy conservation in wireless sensor networks for snow monitoring applications,” in 2007 IEEE International Conference on Mobile Adhoc and Sensor Systems, 2007.
  15. A. Murad, F. A. Kraemer, K. Bach, and G. Taylor, “Information-driven adaptive sensing based on deep reinforcement learning,” ser. IoT ’20, 2020.
  16. V. Campos, B. Jou, X. Giro-i Nieto, J. Torres, and S.-F. Chang, “Skip rnn: Learning to skip state updates in recurrent neural networks,” 2017.
  17. M. Surbatovich, L. Jia, and B. Lucia, “Automatically enforcing fresh and consistent inputs in intermittent systems,” ser. PLDI 2021, 2021.
  18. P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi, “Hardware design experiences in zebranet,” ser. SenSys ’04, 2004.
  19. F. Fang and T. Shinozaki, “Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems.” in Ambient Assisted Living and Home Care, 2018.
  20. J. R. Villar, P. Vergara, M. Menéndez, E. de la Cal, V. M. González, and J. Sedano, “Generalized models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition,” 2016.
  21. Graphical password dataset.
  22. J. K. Holland, E. K. Kemsley, and R. H. Wilson, “Use of fourier transform infrared spectroscopy and partial least squares regression for the detection of adulteration of strawberry purées,” Journal of the Science of Food and Agriculture, 1998.
  23. D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, “Land cover classification via multitemporal spatial data by deep recurrent neural networks,” IEEE Geoscience and Remote Sensing Letters, 2017.
  24. B. H. Williams, M. Toussaint, and A. J. Storkey, “Extracting motion primitives from natural handwriting data,” in Artificial Neural Networks – ICANN 2006.   Springer, 2006, pp. 634–643.
  25. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine,” in Ambient Assisted Living and Home Care.   Springer, 2012, pp. 216–223.
  26. lsm6dsox datasheet. [Online]. Available: https://www.st.com/resource/en/datasheet/lsm6dsox.pdf
  27. Ti msp430 fr5994 datasheet. [Online]. Available: https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
  28. Ti msp430 cc2640r2 datasheet. [Online]. Available: https://www.ti.com/lit/ds/symlink/cc2640r2f.pdf
  29. Ti msp430 energytrace technology. [Online]. Available: https://www.ti.com/tool/ENERGYTRACE
  30. T. Kannan and H. Hoffmann, “Budget rnns: Multi-capacity neural networks to improve in-sensor inference under energy budgets,” in 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS), 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com