Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and limit sets (2402.08721v6)
Abstract: Variational quantum algorithms (VQAs) hold much promise but face the challenge of exponentially small gradients. Unmitigated, this barren plateau (BP) phenomenon leads to an exponential training overhead for VQAs. Perhaps the most pernicious are noise-induced barren plateaus (NIBPs), a type of unavoidable BP arising from open system effects, which have so far been shown to exist for unital noise maps. Here, we generalize the study of NIBPs to more general completely positive, trace-preserving maps, investigating the existence of NIBPs in the unital case and a class of non-unital maps we call Hilbert-Schmidt (HS)-contractive. The latter includes amplitude damping. We identify the associated phenomenon of noise-induced limit sets (NILS) of the VQA cost function and prove its existence for both unital and HS-contractive non-unital noise maps. Along the way, we extend the parameter shift rule of VQAs to the noisy setting. We provide rigorous bounds in terms of the relevant variables that give rise to NIBPs and NILSs, along with numerical simulations of the depolarizing and amplitude-damping maps that illustrate our analytical results.
- J. Preskill, Quantum 2, 79 (2018).
- E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014a).
- H. Y. Huang, K. Bharti, and P. Rebentrost, New Journal of Physics 23, 10.1088/1367-2630/ac325f (2021).
- J. J. Meyer, J. Borregaard, and J. Eisert, npj Quantum Information 7, 89 (2021).
- X. Xu, S. C. Benjamin, and X. Yuan, Phys. Rev. Applied 15, 034068 (2021b).
- E. Farhi and H. Neven, Classification with quantum neural networks on near term processors (2018), arXiv:1802.06002 .
- J. Biamonte, Phys. Rev. A 103, L030401 (2021).
- C. Ortiz Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021).
- E. Cervero Martín, K. Plekhanov, and M. Lubasch, Quantum 7, 974 (2023).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
- M. Schumann, F. K. Wilhelm, and A. Ciani, Emergence of noise-induced barren plateaus in arbitrary layered noise models (2023), arXiv:2310.08405 [quant-ph] .
- K. Bharti and T. Haug, Phys. Rev. A 104, L050401 (2021).
- E. Rosenberg, P. Ginsparg, and P. L. McMahon, Quantum Science and Technology 7, 015024 (2022).
- E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014b), arXiv:1411.4028 [quant-ph] .
- M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
- C. Stover, Generalized Gell-Mann Matrix (2022), From MathWorld–A Wolfram Web Resource, created by Eric W. Weisstein.
- K. Kraus, States, Effects and Operations, Fundamental Notions of Quantum Theory (Academic, 1983).
- Why are two ”random” vectors in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT approximately orthogonal for large n𝑛nitalic_n?, https://mathoverflow.net/.
- D. A. Lidar, arXiv preprint arXiv:1902.00967 (2019).
- J. C. Spall, An Overview of the Simultaneous Perturbation Method for Efficient Optimization, Tech. Rep. (Johns Hopkins apl technical digest, 1998).
- R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics No. 169 (Springer-Verlag, New York, 1997).
- B. Baumgartner, An inequality for the trace of matrix products, using absolute values (2011), arXiv:1106.6189 .
- V. Kasatkin, L. Gu, and D. A. Lidar, Physical Review Research 5, 043163 (2023).