Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction (2402.08698v2)

Published 13 Feb 2024 in cs.CV, cs.LG, and cs.RO

Abstract: Accurate prediction of pedestrians' future motions is critical for intelligent driving systems. Developing models for this task requires rich datasets containing diverse sets of samples. However, the existing naturalistic trajectory prediction datasets are generally imbalanced in favor of simpler samples and lack challenging scenarios. Such a long-tail effect causes prediction models to underperform on the tail portion of the data distribution containing safety-critical scenarios. Previous methods tackle the long-tail problem using methods such as contrastive learning and class-conditioned hypernetworks. These approaches, however, are not modular and cannot be applied to many machine learning architectures. In this work, we propose a modular model-agnostic framework for trajectory prediction that leverages a specialized mixture of experts. In our approach, each expert is trained with a specialized skill with respect to a particular part of the data. To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores. We conduct experimentation on common pedestrian trajectory prediction datasets and show that our method improves performance on long-tail scenarios. We further conduct ablation studies to highlight the contribution of different proposed components.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani, “Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting,” in ICCV, 2021.
  2. M. Pourkeshavarz, C. Chen, and A. Rasouli, “Learn tarot with mentor: A meta-learned self-supervised approach for trajectory prediction,” in ICCV, 2023.
  3. D. Zhu, G. Zhai, Y. Di, F. Manhardt, H. Berkemeyer, T. Tran, N. Navab, F. Tombari, and B. Busam, “Ipcc-tp: Utilizing incremental pearson correlation coefficient for joint multi-agent trajectory prediction,” in CVPR, 2023.
  4. R. Karim, S. M. A. Shabestary, and A. Rasouli, “Destine: Dynamic goal queries with temporal transductive alignment for trajectory prediction,” arXiv preprint arXiv:2310.07438, 2023.
  5. E. Amirloo, A. Rasouli, P. Lakner, M. Rohani, and J. Luo, “Latentformer: Multi-agent transformer-based interaction modeling and trajectory prediction,” arXiv preprint arXiv:2203.01880, 2022.
  6. O. Makansi, O. Cicek, Y. Marrakchi, and T. Brox, “On exposing the challenging long tail in future prediction of traffic actors,” in ICCV, 2021.
  7. Y. Wang, P. Zhang, L. Bai, and J. Xue, “FEND: A future enhanced distribution-aware contrastive learning framework for long-tail trajectory prediction,” in CVPR, 2023.
  8. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” in NeurIPS, 2022.
  9. Y. Gan, H. Xiao, Y. Zhao, E. Zhang, Z. Huang, X. Ye, and L. Ge, “MGTR: Multi-granular transformer for motion prediction with lidar,” arXiv preprint arXiv:2312.02409, 2023.
  10. A. Rasouli, M. Rohani, and J. Luo, “Bifold and semantic reasoning for pedestrian behavior prediction,” in ICCV, 2021.
  11. L. Shi, L. Wang, S. Zhou, and G. Hua, “Trajectory unified transformer for pedestrian trajectory prediction,” in ICCV, 2023.
  12. Y. Zhang, B. Hooi, L. Hong, and J. Feng, “Self-supervised aggregation of diverse experts for test-agnostic long-tailed recognition,” in CVPR, 2022.
  13. A. Rasouli and I. Kotseruba, “Pedformer: Pedestrian behavior prediction via cross-modal attention modulation and gated multitask learning,” in ICRA, 2023.
  14. A. Rasouli, “A novel benchmarking paradigm and a scale-and motion-aware model for egocentric pedestrian trajectory prediction,” arXiv preprint arXiv:2310.10424, 2023.
  15. T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in ECCV, 2020.
  16. Z. Su, S. Zhang, and W. Hua, “CR-LSTM: Collision-prior guided social refinement for pedestrian trajectory prediction,” in IROS, 2021.
  17. P. Dendorfer, S. Elflein, and L. Leal-Taixe, “MG-GAN: A multi-generator model preventing out-of-distribution samples in pedestrian trajectory prediction,” in ICCV, 2021.
  18. A. Hasan, P. Sriram, and K. Driggs-Campbell, “Meta-path analysis on spatio-temporal graphs for pedestrian trajectory prediction,” in ICRA, 2022.
  19. L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “SGCN: Sparse graph convolution network for pedestrian trajectory prediction,” in CVPR, 2021.
  20. Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep Long-Tailed Learning a survey,” in PAMI, 2023.
  21. A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method for learning from imbalanced data sets,” in Computational Intelligence, 2004.
  22. Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with methods addressing the class imbalance problem,” in TKDE, 2005.
  23. A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning via logit adjustment,” in ICLR, 2021.
  24. D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany, “Generating useful accident-prone driving scenarios via a learned traffic prior,” in CVPR, 2022.
  25. D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in ICLR, 2017.
  26. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.
  27. S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of experts,” in TNNLS, 2012.
  28. N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,” in ICLR, 2017.
  29. Y. Zhou, T. Lei, H. Liu, N. Du, Y. Huang, V. Y. Zhao, A. M. Dai, Z. Chen, Q. V. Le, and J. Laudon, “Mixture-of-experts with expert choice routing,” in NeurIPS, 2022.
  30. T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu, “Stochastic trajectory prediction via motion indeterminacy diffusion,” in CVPR, 2022.
  31. W. Mao, C. Xu, Q. Zhu, S. Chen, and Y. Wang, “Leapfrog diffusion model for stochastic trajectory prediction,” in CVPR, 2023.
  32. J. Yue, D. Manocha, and H. Wang, “Human trajectory prediction via neural social physics,” in ECCV, 2022.
  33. K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals and waypoints & paths to long term human trajectory forecasting,” in ICCV, 2021.
  34. Y. Dong, L. Wang, S. Zhou, and G. Hua, “Sparse instance conditioned multimodal trajectory prediction,” in ICCV, 2023.
  35. C. Xu, R. T. Tan, Y. Tan, S. Chen, Y. G. Wang, X. Wang, and Y. Wang, “EqMotion: Equivariant multi-agent motion prediction with invariant interaction reasoning,” in CVPR, 2023.
  36. S. Pellegrini1, A. Ess, K. Schindler, and L. van Gool, “You’ll Never Walk Alone modeling social behavior for multi-target tracking,” 2009.
  37. L. Alon, C. Yiorgos, Lischinski, and Dani, “Crowds by example,” Computer Graphics Forum, vol. 26, no. 3, pp. 655–664, 2007.
  38. J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,” in The Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 14, 1967, pp. 281–297.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com