Beatty Sequences for a Quadratic Irrational: Decidability and Applications (2402.08331v2)
Abstract: Let $\alpha$ and $\beta$ belong to the same quadratic field. We show that the inhomogeneous Beatty sequence $(\lfloor n \alpha + \beta \rfloor)_{n \geq 1}$ is synchronized, in the sense that there is a finite automaton that takes as input the Ostrowski representations of $n$ and $y$ in parallel, and accepts if and only if $y = \lfloor n \alpha + \beta \rfloor$. Since it is already known that the addition relation is computable for Ostrowski representations based on a quadratic number, a consequence is a new and rather simple proof that the first-order logical theory of these sequences with addition is decidable. The decision procedure is easily implemented in the free software Walnut. As an application, we show that for each $r \geq 1$ it is decidable whether the set ${ \lfloor n \alpha + \beta \rfloor \, : \, n \geq 1 }$ forms an additive basis (or asymptotic additive basis) of order $r$. Using our techniques, we also solve some open problems of Reble and Kimberling, and give an explicit characterization of a sequence of Hildebrand et al.
- Generalized Beatty sequences and complementary triples. Moscow J. Combinatorics and Number Theory 8 (2019), 325–341.
- J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, 2003.
- A. R. Baranwal. Decision algorithms for Ostrowski-automatic sequences. Master’s thesis, University of Waterloo, School of Computer Science, 2020.
- Ostrowski-automatic sequences: theory and applications. Theoret. Comput. Sci. 858 (2021), 122–142.
- A. R. Baranwal and J. Shallit. Critical exponent of infinite balanced words via the Pell number system. In R. Mercaş and D. Reidenbach, editors, WORDS 2019, Vol. 11682 of Lecture Notes in Computer Science, pp. 80–92. Springer-Verlag, 2019.
- S. Beatty. Problem 3173. Amer. Math. Monthly 33 (1926), 159. Solution, 34 (1927), 159–160.
- J. Berstel. Fonctions rationnelles et addition. In M. Blab, editor, Théorie des Langages, École de printemps d’informatique théorique, pp. 177–183. LITP, 1982.
- J. Berstel. Fibonacci words—a survey. In G. Rozenberg and A. Salomaa, editors, The Book of L, pp. 13–27. Springer-Verlag, 1986.
- Combinatorics on Words: Christoffel Words and Repetitions in Words, Vol. 27 of CRM Monograph Series. Amer. Math. Soc., 2009.
- Solutions to the 81st William Lowell Putnam mathematical competition. Available at https://kskedlaya.org/putnam-archive/2020s.pdf, 2021.
- V. Bruyère and G. Hansel. Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997), 17–43.
- Logic and p𝑝pitalic_p-recognizable sets of integers. Bull. Belgian Math. Soc. 1 (1994), 191–238. Corrigendum, Bull. Belg. Math. Soc. 1 (1994), 577.
- F. M. Dekking. Sumsets and fixed points of substitutions. Proc. Amer. Math. Soc., Ser. B 9 (2022), 393–403.
- F. M. Dekking. On Hofstadter’s G-sequence. J. Integer Sequences 26 (2023), 23.9.2 (electronic). https://cs.uwaterloo.ca/journals/JIS/VOL26/Dekking2/dek9.html
- Decision algorithms for Fibonacci-automatic words, II: Related sequences and avoidability. Theoret. Comput. Sci. 657 (2017), 146–162.
- Decision algorithms for Fibonacci-automatic words III: Enumeration and abelian properties. Internat. J. Found. Comp. Sci. 27 (2016), 943–963.
- A. S. Fraenkel. The bracket function and complementary sets of integers. Canad. J. Math. 21 (1969), 6–27.
- J. S. Frame. Continued fractions and matrices. Amer. Math. Monthly 56 (1949), 98–103.
- C. Frougny. Linear numeration systems of order two. Inform. Comput. 77 (1988), 233–259.
- C. Frougny. Fibonacci representations and finite automata. IEEE Trans. Inform. Theory 37 (1991), 393–399.
- C. Frougny. Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 37–60.
- A. Günaydın and M. Özsahakyan. Expansions of the group of integers by Beatty sequences. Ann. Pure Appl. Logic 173 (2022), 103062.
- An Introduction to the Theory of Numbers. Oxford Univ. Press, 5th edition, 1985.
- P. Hieronymi. Expansions of the ordered additive group of real numbers by two discrete subgroups. J. Symbolic Logic 81 (2016), 1007–1027.
- Decidability for Sturmian words. In F. Manea and A. Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022), Leibniz International Proceedings in Informatics, pp. 24:1–24:23. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2022.
- P. Hieronymi and A. Terry, Jr. Ostrowski numeration systems, addition, and finite automata. Notre Dame J. Formal Logic 59 (2018), 215–232.
- Almost Beatty partitions. J. Integer Sequences 22 (2019), Article 19.4.6 (electronic). https://cs.uwaterloo.ca/journals/JIS/VOL22/Hildebrand/hilde2.html
- A. Hurwitz and N. Kritikos. Lectures on Number Theory. Springer-Verlag, 1986.
- Sumsets associated with Wythoff sequences and Fibonacci numbers. Period. Math. Hung. 82 (2021), 98–113.
- Model-completeness and decidability of the additive structure of integers expanded with a function for a Beatty sequence. Arxiv preprint arXiv:2110.01673v3 [math.LO]. Available at https://arxiv.org/abs/2110.01673v3, 2022.
- M. Khani and A. Zarei. The additive structure of integers with the lower Wythoff sequence. Archive for Mathematical Logic 62 (2023), 225–237.
- D. E. Knuth. Solution to problem E 2307. Amer. Math. Monthly 79 (1972), 773–774.
- K. Kolden. Continued fractions and linear substitutions. Archiv for Mathematik og Naturvidenskab 50 (1949), 141–196.
- C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952), 190–195.
- M. Lothaire. Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2002.
- H. Mousavi. Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], available at http://arxiv.org/abs/1603.06017, 2016.
- Decision algorithms for Fibonacci-automatic words, I: Basic results. RAIRO Inform. Théor. App. 50 (2016), 39–66.
- M. B. Nathanson. Additive Number Theory—The Classical Bases. Springer-Verlag, 1996.
- M. B. Nathanson. Elementary Methods in Number Theory. Springer, 2000.
- A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Hamburg 1 (1922), 77–98,250–251. Reprinted in Collected Mathematical Papers, Vol. 3, pp. 57–80.
- Sumsets associated with Beatty sequences. Discrete Math. 345 (2022), 112810.
- V. Russo and L. Schwiebert. Beatty sequences, Fibonacci numbers, and the golden ratio. Fibonacci Quart. 49 (2011), 151–154.
- J. Shallit. Synchronized sequences. In T. Lecroq and S. Puzynina, editors, WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science, pp. 1–19. Springer-Verlag, 2021.
- J. Shallit. Sumsets of Wythoff sequences, Fibonacci representation, and beyond. Period. Math. Hung. 84 (2022), 37–46.
- J. Shallit. The Logical Approach To Automatic Sequences: Exploring Combinatorics on Words with Walnut, Vol. 482 of London Math. Society Lecture Note Series. Cambridge University Press, 2023.
- N. J. A. Sloane et al. The On-Line Encyclopedia of Integer Sequences. Electronic resource, available at https://oeis.org, 2024.
- B. A. Venkov. Elementary Number Theory. Wolters-Noordhoff, 1970.
- E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41 (1972), 179–182.