Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Orthogonal Sets over Finite Fields (2402.08274v2)

Published 13 Feb 2024 in cs.CG, cs.DM, cs.IT, math.CO, and math.IT

Abstract: For a field $\mathbb{F}$ and integers $d$ and $k$, a set of vectors of $\mathbb{F}d$ is called $k$-nearly orthogonal if its members are non-self-orthogonal and every $k+1$ of them include an orthogonal pair. We prove that for every prime $p$ there exists a positive constant $\delta = \delta (p)$, such that for every field $\mathbb{F}$ of characteristic $p$ and for all integers $k \geq 2$ and $d \geq k{1/(p-1)}$, there exists a $k$-nearly orthogonal set of at least $d{\delta \cdot k{1/(p-1)}/ \log k}$ vectors of $\mathbb{F}d$. In particular, for the binary field we obtain a set of $d{\Omega( k /\log k)}$ vectors, and this is tight up to the $\log k$ term in the exponent. For comparison, the best known lower bound over the reals is $d{\Omega( \log k / \log \log k)}$ (Alon and Szegedy, Graphs and Combin., 1999). The proof combines probabilistic and spectral arguments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. On graphs and algebraic graphs that do not contain cycles of length 4444. J. Graph Theory, 68(2):91–102, 2011.
  2. N. Alon and M. Krivelevich. Constructive bounds for a Ramsey-type problem. Graphs and Combinatorics, 13(3):217–225, 1997.
  3. N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
  4. N. Alon and M. Szegedy. Large sets of nearly orthogonal vectors. Graphs and Combinatorics, 15(1):1–4, 1999.
  5. I. Balla. Orthonormal representations, vector chromatic number, and extension complexity. arXiv, abs/2310.17482, 2023.
  6. Orthonormal representations of H𝐻Hitalic_H-free graphs. Discret. Comput. Geom., 64(3):654–670, 2020.
  7. Storage codes on triangle-free graphs with asymptotically unit rate. arXiv, abs/2212.12117, 2022.
  8. A. Barg and G. Zémor. High-rate storage codes on triangle-free graphs. IEEE Trans. Inform. Theory, 68(12):7787–7797, 2022.
  9. E. R. Berlekamp. On subsets with intersections of even cardinality. Canad. Math. Bull., 12(4):471–474, 1969.
  10. P. Berman and G. Schnitger. On the complexity of approximating the independent set problem. Inf. Comput., 96(1):77–94, 1992. Preliminary version in STACS’89.
  11. Broadcasting with side information: Bounding and approximating the broadcast rate. IEEE Trans. Inform. Theory, 59(9):5811–5823, 2013.
  12. Some structural properties of low-rank matrices related to computational complexity. Theor. Comput. Sci., 235(1):89–107, 2000.
  13. L. Deaett. The minimum semidefinite rank of a triangle-free graph. Linear Algebra Appl., 434(8):1945–1955, 2011.
  14. P. Erdős. Some remarks on chromatic graphs. Colloq. Math., 16:253–256, 1967.
  15. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica, 2:463–470, 1935.
  16. U. Feige. Randomized graph products, chromatic numbers, and the Lovász ϑitalic-ϑ\varthetaitalic_ϑ-function. Combinatorica, 17(1):79–90, 1997. Preliminary version in STOC’95.
  17. P. Frankl and V. Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259–286, 1987.
  18. Z. Füredi and R. P. Stanley. Sets of vectors with many orthogonal pairs. Graphs and Combinatorics, 8(4):391–394, 1992.
  19. A. Golovnev and I. Haviv. The (generalized) orthogonality dimension of (generalized) Kneser graphs: Bounds and applications. Theory of Computing, 18(22):1–22, 2022. Preliminary version in CCC’21.
  20. W. H. Haemers. An upper bound for the Shannon capacity of a graph. In L. Lovász and V. T. Sós, editors, Algebraic Methods in Graph Theory, volume 25/I of Colloquia Mathematica Societatis János Bolyai, pages 267–272. Bolyai Society and North-Holland, 1978.
  21. I. Haviv. On minrank and forbidden subgraphs. ACM Trans. Comput. Theory (TOCT), 11(4):20, 2019. Preliminary version in RANDOM’18.
  22. H. Huang and Q. Xiang. Construction of storage codes of rate approaching one on triangle-free graphs. Des. Codes Cryptogr., 91(12):3901––3913, 2023.
  23. L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.
  24. L. Lovász. Graphs and Geometry, volume 65. Colloquium Publications, 2019.
  25. A. Mohammadi and G. Petridis. Almost orthogonal subsets of vector spaces over finite fields. Eur. J. Comb., 103:103515, 2022.
  26. J. Nešetřil and M. Rosenfeld. Embedding graphs in Euclidean spaces, an exploration guided by Paul Erdős. Geombinatorics, 6:143–155, 1997.
  27. R. Peeters. Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica, 16(3):417–431, 1996.
  28. P. Pudlák. Cycles of nonzero elements in low rank matrices. Combinatorica, 22(2):321–334, 2002.
  29. M. Rosenfeld. Almost orthogonal lines in Edsuperscript𝐸𝑑{E}^{d}italic_E start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. DIMACS Series in Discrete Math., 4:489–492, 1991.
  30. L. A. Vinh. On the number of orthogonal systems in vector spaces over finite fields. Electr. J. Comb., 15(32):1–4, 2008.
  31. A. Zame. Orthogonal sets of vectors over Zmsubscript𝑍𝑚{Z}_{m}italic_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. J. Comb. Theory, 9(2):136–143, 1970.
Citations (1)

Summary

We haven't generated a summary for this paper yet.