Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Reconfigurable V-shape Formation of Multiple UAVs in Narrow Space Environments (2402.08245v1)

Published 13 Feb 2024 in cs.RO

Abstract: This paper presents the design and implementation of a self-reconfigurable V-shape formation controller for multiple unmanned aerial vehicles (UAVs) navigating through narrow spaces in a dense obstacle environment. The selection of the V-shape formation is motivated by its maneuverability and visibility advantages. The main objective is to develop an effective formation control strategy that allows UAVs to autonomously adjust their positions to form the desired formation while navigating through obstacles. To achieve this, we propose a distributed behavior-based control algorithm that combines the behaviors designed for individual UAVs so that they together navigate the UAVs to their desired positions. The reconfiguration process is automatic, utilizing individual UAV sensing within the formation, allowing for dynamic adaptations such as opening/closing wings or merging into a straight line. Simulation results show that the self-reconfigurable V-shape formation offers adaptability and effectiveness for UAV formations in complex operational scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019.
  2. N. Duong Thi Thuy, D. Nam Bui, M. Duong Phung, and H. Pham Duy, “Deployment of UAVs for optimal multihop ad-hoc networks using particle swarm optimization and behavior-based control,” in 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 304–309, 2022.
  3. B. D. O. Anderson, B. Fidan, C. Yu, and D. Walle, “UAV formation control: Theory and application,” in Lecture Notes in Control and Information Sciences, pp. 15–33, Springer London, 2008.
  4. H. P. Quang, T. Nguyen Dam, V. N. Hoang, and H. Pham Duy, “Multi-UAV coverage strategy with v-shaped formation for patrol and surveillance,” in 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 487–492, 2022.
  5. T. Balch and R. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998.
  6. T. Balch, “Hierarchic social entropy: An information theoretic measure of robot group diversity,” Autonomous Robots, vol. 8, no. 3, pp. 209–238, 2000.
  7. J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus, “Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5356–5363, 2016.
  8. A. D. Dang, H. M. La, T. Nguyen, and J. Horn, “Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach,” International Journal of Advanced Robotic Systems, vol. 16, p. 172988141984789, May 2019.
  9. V. Hoang, M. Phung, T. Dinh, Q. Zhu, and Q. Ha, “Reconfigurable multi-UAV formation using angle-encoded pso,” in 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 1670–1675, 2019.
  10. A. Mirzaeinia, M. Hassanalian, K. Lee, and M. Mirzaeinia, “Energy conservation of v-shaped swarming fixed-wing drones through position reconfiguration,” Aerospace Science and Technology, vol. 94, p. 105398, Nov. 2019.
  11. H. Zhu, J. Juhl, L. Ferranti, and J. Alonso-Mora, “Distributed multi-robot formation splitting and merging in dynamic environments,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 9080–9086, 2019.
  12. D. Roy, A. Chowdhury, M. Maitra, and S. Bhattacharya, “Multi-robot virtual structure switching and formation changing strategy in an unknown occluded environment,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4854–4861, 2018.
  13. Q. Feng, X. Hai, B. Sun, Y. Ren, Z. Wang, D. Yang, Y. Hu, and R. Feng, “Resilience optimization for multi-UAV formation reconfiguration via enhanced pigeon-inspired optimization,” Chinese Journal of Aeronautics, vol. 35, pp. 110–123, Jan. 2022.
  14. C. Gao, J. Ma, T. Li, and Y. Shen, “Hybrid swarm intelligent algorithm for multi-UAV formation reconfiguration,” Complex & Intelligent Systems, vol. 9, pp. 1929–1962, Oct. 2022.
  15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
  16. A. M. Kahagh, F. Pazooki, and S. E. Haghighi, “Obstacle avoidance in v-shape formation flight of multiple fixed-wing UAVs using variable repulsive circles,” The Aeronautical Journal, vol. 124, pp. 1979–2000, Oct. 2020.
  17. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical Review Letters, vol. 75, pp. 1226–1229, Aug. 1995.

Summary

We haven't generated a summary for this paper yet.