Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Modulus RF Beamforming for Enhanced Self-Interference Suppression in Full-Duplex Massive MIMO Systems (2402.08230v1)

Published 13 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: This study employs a uniform rectangular array (URA) sub-connected hybrid beamforming (SC-HBF) architecture to provide a novel self-interference (SI) suppression scheme in a full-duplex (FD) massive multiple-input multiple-output (mMIMO) system. Our primary objective is to mitigate the strong SI through the design of RF beamforming stages for uplink and downlink transmissions that utilize the spatial degrees of freedom provided due to the use of large array structures. We propose a non-constant modulus RF beamforming (NCM-BF-SIS) scheme that incorporates the gain controllers for both transmit (Tx) and receive (Rx) RF beamforming stages and optimizes the uplink and downlink beam directions jointly with gain controller coefficients. To solve this challenging non-convex optimization problem, we propose a swarm intelligence-based algorithmic solution that finds the optimal beam perturbations while also adjusting the Tx/Rx gain controllers to alleviate SI subject to the directivity degradation constraints for the beams. The data-driven analysis based on the measured SI channel in an anechoic chamber shows that the proposed NCM-BF-SIS scheme can suppress SI by around 80 dB in FD mMIMO systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. A. Shojaeifard et al., “Massive MIMO-enabled full-duplex cellular networks,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4734–4750, 2017.
  2. C. D. Nwankwo et al., “A survey of self-interference management techniques for single frequency full duplex systems,” IEEE Access, vol. 6, pp. 30 242–30 268, 2017.
  3. C. X. Mao et al., “Low-profile strip-loaded textile antenna with enhanced bandwidth and isolation for full-duplex wearable applications,” IEEE Trans. Antennas Propag., vol. 68, no. 9, pp. 6527–6537, 2020.
  4. M. A. Islam et al., “Joint analog and digital transceiver design for wideband full duplex MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9729–9743, 2022.
  5. S.-M. Kim et al., “Performance analysis of self-interference cancellation in full-duplex massive MIMO systems: Subtraction versus spatial suppression,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 642–657, 2022.
  6. Y. Gong et al., “Dual-layer metamaterial rectangular antenna arrays for in-band full-duplex massive MIMO,” IEEE Access, vol. 11, pp. 135 708–135 727, 2023.
  7. “5G; study on scenarios and requirements for next generation access technologies,” 3GPP, TR 38.913 Ver. 17.0.0, May 2022.
  8. E. Everett et al., “Softnull: Many-antenna full-duplex wireless via digital beamforming,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8077–8092, 2016.
  9. A. Koc et al., “Full-duplex mmWave massive MIMO systems: A joint hybrid precoding/combining and self-interference cancellation design,” IEEE Open J. Commun. Soc., vol. 2, pp. 754–774, 2021.
  10. Z. Luo et al., “Robust hybrid precoding/combining designs for full-duplex millimeter wave relay systems,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 9577–9582, 2021.
  11. A. Koc et al., “Intelligent non-orthogonal beamforming with large self-interference cancellation capability for full-duplex multiuser massive MIMO systems,” IEEE Access, vol. 10, pp. 51 771–51 791, 2022.
  12. K. Satyanarayana et al., “Hybrid beamforming design for full-duplex millimeter wave communication,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1394–1404, 2019.
  13. G. C. Alexandropoulos et al., “Full-duplex massive multiple-input, multiple-output architectures: Recent advances, applications, and future directions,” IEEE Veh. Technol. Mag., 2022.
  14. M. Mahmood et al., “Sub-array selection in full-duplex massive MIMO for enhanced self-interference suppression,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec 2023, arxiv:2309.03317.
  15. M. Mahmood et al., “2D antenna array structures for hybrid massive MIMO precoding,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.
  16. M. Mahmood et al., “Energy-efficient MU-massive-MIMO hybrid precoder design: Low-resolution phase shifters and digital-to-analog converters for 2D antenna array structures,” IEEE Open J. Commun. Soc., vol. 2, pp. 1842–1861, 2021.
  17. M. Mahmood et al., “3-D antenna array structures for millimeter wave multi-user massive MIMO hybrid precoder design: A performance comparison,” IEEE Commun. Lett., vol. 26, no. 6, pp. 1393–1397, 2022.
  18. “5G; NR;. base station (BS) radio transmission and reception,” 3GPP, TS 38.104 Ver. 16.4.0, July 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.