Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Algorithm for Connected Odd Cycle Transversal Parameterized by Clique-width (2402.08046v2)

Published 12 Feb 2024 in cs.DS

Abstract: Recently, Bojikian and Kratsch [2023] have presented a novel approach to tackle connectivity problems parameterized by clique-width ($\operatorname{cw}$), based on counting small representations of partial solutions (modulo two). Using this technique, they were able to get a tight bound for the Steiner Tree problem, answering an open question posed by Hegerfeld and Kratsch [ESA, 2023]. We use the same technique to solve the Connected Odd Cycle Transversal problem in time $\mathcal{O}*(12{\operatorname{cw}})$. We define a new representation of partial solutions by separating the connectivity requirement from the 2-colorability requirement of this problem. Moreover, we prove that our result is tight by providing SETH-based lower bound excluding algorithms with running time $\mathcal{O}*((12-\epsilon){\operatorname{lcw}})$ even when parameterized by linear clique-width. This answers the second question posed by Hegerfeld and Kratsch in the same paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Linear rank-width and linear clique-width of trees. Theor. Comput. Sci., 589:87–98, 2015. doi:10.1016/j.tcs.2015.04.021.
  2. Fast exact algorithms for some connectivity problems parameterized by clique-width. Theor. Comput. Sci., 782:30–53, 2019. doi:10.1016/j.tcs.2019.02.030.
  3. Fourier meets möbius: fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67–74. ACM, 2007. doi:10.1145/1250790.1250801.
  4. Fast zeta transforms for lattices with few irreducibles. ACM Trans. Algorithms, 12(1):4:1–4:19, 2016. doi:10.1145/2629429.
  5. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.
  6. Tight bounds for connectivity problems parameterized by cutwidth. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.14.
  7. A tight monte-carlo algorithm for steiner tree parameterized by clique-width. CoRR, abs/2307.14264, 2023. arXiv:2307.14264, doi:10.48550/arXiv.2307.14264.
  8. On the relationship between clique-width and treewidth. SIAM J. Comput., 34(4):825–847, 2005. doi:10.1137/S0097539701385351.
  9. Upper bounds to the clique width of graphs. Discret. Appl. Math., 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.
  10. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM, 2016. doi:10.1137/1.9781611974331.ch113.
  11. Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
  12. Solving connectivity problems parameterized by treewidth in single exponential time. CoRR, abs/1103.0534, 2011. URL: http://arxiv.org/abs/1103.0534, arXiv:1103.0534.
  13. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
  14. List homomorphisms by deleting edges and vertices: tight complexity bounds for bounded-treewidth graphs. CoRR, abs/2210.10677, 2022. arXiv:2210.10677, doi:10.48550/arXiv.2210.10677.
  15. How to solve np-hard graph problems on clique-width bounded graphs in polynomial time. In Andreas Brandstädt and Van Bang Le, editors, Graph-Theoretic Concepts in Computer Science, 27th International Workshop, WG 2001, Boltenhagen, Germany, June 14-16, 2001, Proceedings, volume 2204 of Lecture Notes in Computer Science, pages 117–128. Springer, 2001. doi:10.1007/3-540-45477-2_12.
  16. The fine-grained complexity of graph homomorphism parameterized by clique-width. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 66:1–66:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.66.
  17. Tight bounds for counting colorings and connected edge sets parameterized by cutwidth. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.36.
  18. On the relationship between nlc-width and linear nlc-width. Theor. Comput. Sci., 347(1-2):76–89, 2005. doi:10.1016/j.tcs.2005.05.018.
  19. Vertex disjoint paths on clique-width bounded graphs. Theor. Comput. Sci., 359(1-3):188–199, 2006. doi:10.1016/j.tcs.2006.02.026.
  20. Towards exact structural thresholds for parameterized complexity. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 17:1–17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.17.
  21. Tight algorithms for connectivity problems parameterized by clique-width. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 59:1–59:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.59.
  22. Tight algorithms for connectivity problems parameterized by clique-width. CoRR, abs/2302.03627, 2023. arXiv:2302.03627, doi:10.48550/arXiv.2302.03627.
  23. Tight algorithms for connectivity problems parameterized by modular-treewidth. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected Papers, volume 14093 of Lecture Notes in Computer Science, pages 388–402. Springer, 2023. doi:10.1007/978-3-031-43380-1_28.
  24. Graphs of linear clique-width at most 3. Theor. Comput. Sci., 412(39):5466–5486, 2011. doi:10.1016/j.tcs.2011.06.016.
  25. Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs. Discret. Appl. Math., 160(6):888–901, 2012. doi:10.1016/j.dam.2011.03.018.
  26. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
  27. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.1774.
  28. On the equivalence among problems of bounded width. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 754–765. Springer, 2015. doi:10.1007/978-3-662-48350-3_63.
  29. Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.tcs.2019.08.006.
  30. Structural parameters, tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90–117, 2019. doi:10.1016/j.dam.2018.11.002.
  31. Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538–1558, 2020. doi:10.1137/19M1280326.
  32. Known algorithms on graphs of bounded treewidth are probably optimal. CoRR, abs/1007.5450, 2010. URL: http://arxiv.org/abs/1007.5450, arXiv:1007.5450.
  33. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018. doi:10.1145/3170442.
  34. Matching is as easy as matrix inversion. Comb., 7(1):105–113, 1987. doi:10.1007/BF02579206.
  35. Lower bounds for dynamic programming on planar graphs of bounded cutwidth. J. Graph Algorithms Appl., 24(3):461–482, 2020. doi:10.7155/jgaa.00542.
  36. Johan M. M. van Rooij. A generic convolution algorithm for join operations on tree decompositions. In Rahul Santhanam and Daniil Musatov, editors, Computer Science - Theory and Applications - 16th International Computer Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28 - July 2, 2021, Proceedings, volume 12730 of Lecture Notes in Computer Science, pages 435–459. Springer, 2021. doi:10.1007/978-3-030-79416-3_27.
  37. Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.
Citations (1)

Summary

We haven't generated a summary for this paper yet.