Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending 3D body pose estimation for robotic-assistive therapies of autistic children (2402.08006v1)

Published 12 Feb 2024 in cs.RO, cs.CV, and cs.HC

Abstract: Robotic-assistive therapy has demonstrated very encouraging results for children with Autism. Accurate estimation of the child's pose is essential both for human-robot interaction and for therapy assessment purposes. Non-intrusive methods are the sole viable option since these children are sensitive to touch. While depth cameras have been used extensively, existing methods face two major limitations: (i) they are usually trained with adult-only data and do not correctly estimate a child's pose, and (ii) they fail in scenarios with a high number of occlusions. Therefore, our goal was to develop a 3D pose estimator for children, by adapting an existing state-of-the-art 3D body modelling method and incorporating a linear regression model to fine-tune one of its inputs, thereby correcting the pose of children's 3D meshes. In controlled settings, our method has an error below $0.3m$, which is considered acceptable for this kind of application and lower than current state-of-the-art methods. In real-world settings, the proposed model performs similarly to a Kinect depth camera and manages to successfully estimate the 3D body poses in a much higher number of frames.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. S. Ali, F. Mehmood, D. Dancey, Y. Ayaz, M. J. Khan, N. Naseer, R. D. C. Amadeu, H. Sadia, and R. Nawaz, “An adaptive multi-robot therapy for improving joint attention and imitation of asd children,” IEEE Access, vol. 7, pp. 81 808–81 825, 2019.
  2. Z. Zheng, E. M. Young, A. R. Swanson, A. S. Weitlauf, Z. E. Warren, and N. Sarkar, “Robot-mediated imitation skill training for children with autism,” IEEE Trans. Neural Syst., vol. 24, no. 6, pp. 682–691, 2016.
  3. E. Marinoiu, M. Zanfir, V. Olaru, and C. Sminchisescu, “3d human sensing, action and emotion recognition in robot assisted therapy of children with autism,” in CVPR, 2018.
  4. J. M. Rehg, G. D. Abowd, A. Rozga, M. Romero, M. A. Clements, S. Sclaroff, I. Essa, O. Y. Ousley, Y. Li, C. Kim, H. Rao, J. C. Kim, L. L. Presti, J. Zhang, D. Lantsman, J. Bidwell, and Z. Ye, “Decoding children’s social behavior,” in CVPR, 2013, pp. 3414–3421.
  5. M.-H. Nguyen, C.-C. Hsiao, W.-H. Cheng, and C.-C. Huang, “Practical 3d human skeleton tracking based on multi-view and multi-kinect fusion,” Multimedia Systems, vol. 28, no. 2, pp. 529–552, Apr 2022.
  6. A. Mustafa, A. Caliskan, L. Agapito, and A. Hilton, “Multi-person implicit reconstruction from a single image,” in CVPR, 2021, pp. 14 474–14 483.
  7. W. Jiang, N. Kolotouros, G. Pavlakos, X. Zhou, and K. Daniilidis, “Coherent reconstruction of multiple humans from a single image,” in CVPR, 2020.
  8. Y. Sun, Q. Bao, W. Liu, Y. Fu, M. J. Black, and T. Mei, “Monocular, one-stage, regression of multiple 3d people,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11 179–11 188.
  9. Y. Sun, W. Liu, Q. Bao, Y. Fu, T. Mei, and M. J. Black, “Putting people in their place: Monocular regression of 3d people in depth,” in CVPR, 2022, pp. 13 243–13 252.
  10. N. Hesse, S. Pujades, J. Romero, M. J. Black, C. Bodensteiner, M. Arens, U. G. Hofmann, U. Tacke, M. Hadders-Algra, R. Weinberger, W. Müller-Felber, and A. S. Schroeder, “Learning an infant body model from RGB-D data for accurate full body motion analysis,” in MICCAI.   Springer, 2018.
  11. L. Santos, A. Geminiani, P. Schydlo, I. Olivieri, J. Santos-Victor, and A. Pedrocchi, “Design of a robotic coach for motor, social and cognitive skills training toward applications with ASD children,” IEEE Trans. Neural Syst. Rehabil. Eng., 2021.
  12. G. Nagymáté and R. M. Kiss, “Application of optitrack motion capture systems in human movement analysis: A systematic literature review,” Recent innov. mechatron., vol. 5, no. 1., p. 1–9., Apr. 2018.
  13. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick, “Segment anything,” 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Laura Santos (2 papers)
  2. Bernardo Carvalho (19 papers)
  3. Catarina Barata (13 papers)
  4. José Santos-Victor (22 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.