Papers
Topics
Authors
Recent
Search
2000 character limit reached

Continuous Representations of Preferences by Means of Two Continuous Functions

Published 24 Jan 2024 in econ.TH | (2402.07908v1)

Abstract: Let $\precsim$ be a reflexive binary relation on a topological space $(X, \tau )$. A pair $(u,v)$ of continuous real-valued functions on $(X, \tau )$ is said to be a {\em continuous representation} of $\precsim$ if, for all $x,y \in X$, [$(x \precsim y \Leftrightarrow u(x) \leq v(y))$]. In this paper we provide a characterization of the existence of a continuous representation of this kind in the general case when neither the functions $u$ and $v$ nor the topological space $(X,\tau )$ are required to satisfy any particular assumptions. Such characterization is based on a suitable continuity assumption of the binary relation $\precsim$, called {\em weak continuity}. In this way, we generalize all the previous results on the continuous representability of interval orders, and also of total preorders, as particular cases.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.