Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Representations of Preferences by Means of Two Continuous Functions (2402.07908v1)

Published 24 Jan 2024 in econ.TH

Abstract: Let $\precsim$ be a reflexive binary relation on a topological space $(X, \tau )$. A pair $(u,v)$ of continuous real-valued functions on $(X, \tau )$ is said to be a {\em continuous representation} of $\precsim$ if, for all $x,y \in X$, [$(x \precsim y \Leftrightarrow u(x) \leq v(y))$]. In this paper we provide a characterization of the existence of a continuous representation of this kind in the general case when neither the functions $u$ and $v$ nor the topological space $(X,\tau )$ are required to satisfy any particular assumptions. Such characterization is based on a suitable continuity assumption of the binary relation $\precsim$, called {\em weak continuity}. In this way, we generalize all the previous results on the continuous representability of interval orders, and also of total preorders, as particular cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.