Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow Matching on Assignment Manifolds (2402.07846v1)

Published 12 Feb 2024 in cs.LG and stat.ML

Abstract: This paper introduces a novel generative model for discrete distributions based on continuous normalizing flows on the submanifold of factorizing discrete measures. Integration of the flow gradually assigns categories and avoids issues of discretizing the latent continuous model like rounding, sample truncation etc. General non-factorizing discrete distributions capable of representing complex statistical dependencies of structured discrete data, can be approximated by embedding the submanifold into a the meta-simplex of all joint discrete distributions and data-driven averaging. Efficient training of the generative model is demonstrated by matching the flow of geodesics of factorizing discrete distributions. Various experiments underline the approach's broad applicability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets