Papers
Topics
Authors
Recent
2000 character limit reached

Towards a mathematical theory for consistency training in diffusion models

Published 12 Feb 2024 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, and stat.TH | (2402.07802v1)

Abstract: Consistency models, which were proposed to mitigate the high computational overhead during the sampling phase of diffusion models, facilitate single-step sampling while attaining state-of-the-art empirical performance. When integrated into the training phase, consistency models attempt to train a sequence of consistency functions capable of mapping any point at any time step of the diffusion process to its starting point. Despite the empirical success, a comprehensive theoretical understanding of consistency training remains elusive. This paper takes a first step towards establishing theoretical underpinnings for consistency models. We demonstrate that, in order to generate samples within $\varepsilon$ proximity to the target in distribution (measured by some Wasserstein metric), it suffices for the number of steps in consistency learning to exceed the order of $d{5/2}/\varepsilon$, with $d$ the data dimension. Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 73 likes about this paper.