Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tuning Structural and Electronic Properties of Metal-Organic Framework 5 by Metal Substitution and Linker Functionalization (2402.07733v1)

Published 12 Feb 2024 in cond-mat.mtrl-sci

Abstract: The chemical flexibility of metal-organic frameworks (MOFs) offers an ideal platform to tune structure and composition for specific applications, from gas sensing to catalysis and from photoelectric conversion to energy storage. This variability gives rise to a large configurational space that can be efficiently explored using high-throughput computational methods. In this work, we investigate from first principles the structural and electronic properties of MOF-5 variants obtained by replacing Zn with Be, Mg, Cd, Ca, Sr, and Ba, and by functionalizing the originally H-passivated linkers with CH$_3$, NO$_2$, Cl, Br, NH$_2$, OH, and COOH groups. To build and analyze the resulting 56 structures, we employ density-functional theory calculations embedded in an in-house developed library for automatized calculations. Our findings reveal that structural properties are mainly defined by metal atoms and large functional groups which distort the lattice and modify coordination. Stability is largely influenced by functionalization and enhanced by COOH and OH groups which promote the formation of hydrogen bonds. The charge distribution within the linker is especially influenced by functional groups with electron-withdrawing character while the metal nodes play a minor role. Likewise, the band-gap size is crucially determined by ligand functionalization. The smallest gaps are found with NH$_2$ and OH groups which introduce localized orbitals at the top of the valence band. This characteristic makes these functionalizations particularly promising for the design of MOF-5 variants with enhanced gas uptake and sensing properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. S. L. James, Chem. Soc. Rev. 32, 276 (2003).
  2. H.-D. Saßnick and C. Cocchi, J. Chem. Phys.  156, 104108 (2022), https://doi.org/10.1063/5.0082710 .
  3. K. Momma and F. Izumi, J. Appl. Cryst.  44, 1272 (2011).
  4. K. T. Butler, C. H. Hendon,  and A. Walsh, “Crystal structures,”  (2015).
  5. W. Haynes, CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, 2014).
  6. F. Jensen, Introduction to Computational Chemistry, 2nd ed. (Wiley, 2007).
  7. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
  8. A. a. E. R. J. Otero-de-la Roza and V. Luaña, Comput. Phys. Commun.  185, 1007 (2014).
  9. R. Bader and P. Zou, Chem. Phys. Lett.  191, 54 (1992).
  10. M. Yu and D. R. Trinkle, J. Chem. Phys.  134, 064111 (2011).
  11. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
  12. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res.  36, 255 (2003).
  13. J. P. Perdew and M. Levy, Phys. Rev. Lett.  51, 1884 (1983).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com