Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anonymizing Test Data in Android: Does It Hurt? (2402.07460v1)

Published 12 Feb 2024 in cs.SE

Abstract: Failure data collected from the field (e.g., failure traces, bug reports, and memory dumps) represent an invaluable source of information for developers who need to reproduce and analyze failures. Unfortunately, field data may include sensitive information and thus cannot be collected indiscriminately. Privacy-preserving techniques can address this problem anonymizing data and reducing the risk of disclosing personal information. However, collecting anonymized information may harm reproducibility, that is, the anonymized data may not allow the reproduction of a failure observed in the field. In this paper, we present an empirical investigation about the impact of privacy-preserving techniques on the reproducibility of failures. In particular, we study how five privacy-preserving techniques may impact reproducibilty for 19 bugs in 17 Android applications. Results provide insights on how to select and configure privacy-preserving techniques.

Summary

We haven't generated a summary for this paper yet.