Many-Body Eigenstates from Quantum Manifold Optimization (2402.07100v1)
Abstract: Quantum computing offers several new pathways toward finding many-body eigenstates, with variational approaches being some of the most flexible and near-term oriented. These require particular parameterizations of the state, and for solving multiple eigenstates must incorporate orthogonality. In this work, we use techniques from manifold optimization to arrive at solutions of the many-body eigenstate problem via direct minimization over the Stiefel and Grassmannian manifolds, avoiding parameterizations of the states and allowing for multiple eigenstates to be simultaneously calculated. These Riemannian manifolds naturally encode orthogonality constraints and have efficient quantum representations of the states and tangent vectors. We provide example calculations for quantum many-body molecular systems and discuss different pathways for solving the multiple eigenstate problem.
- L. Lin and Y. Tong, Near-optimal ground state preparation, Quantum 4, 372 (2020).
- M. Motta and J. E. Rice, Emerging quantum computing algorithms for quantum chemistry, WIREs Computational Molecular Science 12, e1580 (2022).
- S. E. Smart and D. A. Mazziotti, Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular Simulations on Quantum Computing Devices, Physical Review Letters 126, 070504 (2021), arxiv:2004.11416 .
- O. Higgott, D. Wang, and S. Brierley, Variational Quantum Computation of Excited States, , 1 (2018), arxiv:1805.08138 .
- S. E. Smart, D. M. Welakuh, and P. Narang, Many-Body Excited States with a Contracted Quantum Eigensolver (2023), arxiv:2305.09653 [quant-ph] .
- K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search variational quantum eigensolver for excited states, Physical Review Research 1, 1 (2019), arxiv:1810.09434 .
- Q.-X. Xie, S. Liu, and Y. Zhao, Orthogonal State Reduction Variational Eigensolver for the Excited-State Calculations on Quantum Computers, J. Chem. Theory Comput. 18, 3737 (2022).
- E. R. Anschuetz and B. T. Kiani, Beyond Barren Plateaus: Quantum Variational Algorithms Are Swamped With Traps, (2022), arxiv:2205.05786 .
- A. Edelman, T. A. Arias, and S. T. Smith, The Geometry of Algorithms with Orthogonality Constraints, SIAM J. Matrix Anal. Appl. 20, 303 (1998).
- C. J. Taylor and D. J. Kriegman, Minimization on the Lie Group and Related Manifolds Minimization on the Lie Group SO (3) and Related Manifolds, Technical Report No. 9405 , 10 (1994).
- N. Boumal, An Introduction to Optimization on Smooth Manifolds, 1st ed. (Cambridge University Press, 2023).
- An Introduction to Manifolds, Universitext (Springer, New York, NY, 2008).
- Optimization Algorithms on Matrix Manifolds (Sun, 12/23/2007 - 12:00).
- R. Shepard, S. R. Brozell, and G. Gidofalvi, The Representation and Parametrization of Orthogonal Matrices, J. Phys. Chem. A 119, 7924 (2015).
- S. Huckemann and H. Ziezold, Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces, Advances in Applied Probability 38, 299 (2006).
- P. Turaga, A. Veeraraghavan, and R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision, in 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008) pp. 1–8.
- E. Chiumiento and M. Melgaard, Stiefel and Grassmann manifolds in Quantum Chemistry, Journal of Geometry and Physics 62, 1866 (2012), arxiv:1105.1661 [math-ph] .
- R. Wiersema and N. Killoran, Optimizing quantum circuits with Riemannian gradient flow, https://arxiv.org/abs/2202.06976v2 (2022).
- I. A. Luchnikov, M. E. Krechetov, and S. N. Filippov, Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies, New Journal of Physics 23, 10.1088/1367-2630/ac0b02 (2021b), arxiv:2007.01287 .
- K. Hüper, I. Markina, and F. S. Leite, A Lagrangian approach to extremal curves on Stiefel manifolds, JGM 13, 55 (2021).
- S. E. Smart and D. A. Mazziotti, Many-Fermion Simulation from the Contracted Quantum Eigensolver without Fermionic Encoding of the Wave Function, Physical Review A 105, 062424 (2022a), arxiv:2205.01725 .
- H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nat. Phys. 16, 1050 (2020).
- H. Sato, Riemannian conjugate gradient methods: General framework and specific algorithms with convergence analyses, SIAM J. Optim. 32, 2690 (2022), arxiv:2112.02572 [math] .
- M. Lezcano-Casado, Trivializations for Gradient-Based Optimization on Manifolds (2019), arxiv:1909.09501 [cs, stat] .
- N. Yamamoto, On the natural gradient for variational quantum eigensolver (2019), arxiv:1909.05074 [quant-ph] .
- S. E. Smart and D. A. Mazziotti, Accelerated Convergence of Contracted Quantum Eigensolvers through a Quasi-Second-Order, Locally Parameterized Optimization, Journal of Chemical Theory and Computation 10.1021/acs.jctc.2c00446 (2022b), arxiv:2205.01726 .
- D. A. Mazziotti, Anti-Hermitian Contracted Schrödinger Equation: Direct Determination of the Two-Electron Reduced Density Matrices of Many-Electron Molecules, Physical Review Letters 97, 143002 (2006).
- H. Nakatsuji, Structure of the exact wave function. III. Exponential ansatz, Journal of Chemical Physics 115, 2465 (2001).