Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full Quantum Process Tomography of a Universal Entangling Gate on an IBM's Quantum Computer (2402.06946v1)

Published 10 Feb 2024 in quant-ph

Abstract: Characterizing quantum dynamics is a cornerstone pursuit across quantum physics, quantum information science, and quantum computation. The precision of quantum gates in manipulating input basis states and their intricate superpositions is paramount. In this study, we conduct a thorough analysis of the SQSCZ gate, a universal two-qubit entangling gate, using real quantum hardware. This gate is a fusion of the square root of SWAP ($\sqrt{SWAP}$) and the square root of controlled-Z ($\sqrt{CZ}$) gates, serves as a foundational element for constructing universal gates, including the controlled-NOT gate. we begin by explaining the theory behind quantum process tomography (QPT), exploring the \textit{Choi-Jamiolkowski} isomorphism or the Choi matrix representation of the quantum process, along with a QPT algorithm utilizing Choi representation. Subsequently, we provide detailed insights into the experimental realization of the SQSCZ gate using a transmon-based superconducting qubit quantum computer. To comprehensively assess the gate's performance on a noisy intermediate-scale quantum (NISQ) computer, we conduct QPT experiments across diverse environments, employing both IBM Quantum's simulators and IBM Quantum's real quantum computer. Leveraging the Choi matrix in our QPT experiments allows for a comprehensive characterization of our quantum operations. Our analysis unveils commendable fidelities and noise properties of the SQSCZ gate, with process fidelities reaching $97.27098\%$ and $88.99383\%$, respectively. These findings hold promising implications for advancing both theoretical understanding and practical applications in the realm of quantum computation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. M. AbuGhanem and H. Eleuch, “NISQ Computers: A Path to Quantum Supremacy,” arXiv preprint arXiv:2310.01431 [quant-ph], (2023). https://doi.org/10.48550/arXiv.2310.01431
  2. Dowling, J. P. and Milburn, G. J., “Quantum technology: the second quantum revolution,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 361, 1655–1674 (2003).
  3. Bennett, C. H. and Brassard, G., “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of the ieee international conference on computers, systems, and signal processing, bangalore, india, (1984). (1984).
  4. M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, 10th anniversary ed., (2011).
  5. Degen, C., Reinhard, F. and Cappellaro, P. “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
  6. I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455 (1997).
  7. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390 (1997).
  8. J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum Process Tomography of a Controlled-NOT Gate,” Phys. Rev. Lett. 93, 080502 (2004).
  9. Nielsen, M. A., Knill, E. and Laflamme, R. “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52 (1998).
  10. Childs, A. M., Chuang, I. L. and Leung, D. W. “Realization of quantum process tomography in NMR,” Phys. Rev. A 64, 012314 (2001).
  11. Myrskog, S. H., Fox, J. K., Mitchell, M. W. and Steinberg, A. M. “Quantum process tomography on vibrational states of atoms in an optical lattice,” Phys. Rev. A 72, 013615 (2005).
  12. Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P. O., Korber, T. K., Hansel, W., Haffner, H., Roos, C. F. and Blatt, R. “Process tomography of ion trap quantum gates,” Phys. Rev. Lett. 97, 220407 (2006).
  13. Jacob, K. V., Mirasola, A. E., Adhikari, S. and Dowling, J. P. “Direct characterization of linear and quadratically nonlinear optical systems,” Phys. Rev. A 98, 052327 (2018).
  14. M. AbuGhanem and H. Eleuch, “Two-qubit entangling gates for superconducting quantum computers,” Results in Physics 56, 107236 (2024).
  15. M. AbuGhanem and H. Eleuch, “Experimental characterization of Google’s Sycamore quantum AI on an IBM’s quantum computer,” Available at SSRN (2023). http://dx.doi.org/10.2139/ssrn.4299338
  16. M. AbuGhanem and H. Eleuch, “A Quantum State tomography study of Google’s Sycamore gate on an IBM’s quantum computer,” Available at SSRN (2023). http://dx.doi.org/10.2139/ssrn.4316581
  17. Shor, P. W. and Preskill, J. “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
  18. Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H. “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
  19. Bienvenu, N., Perez-Garcia, B., Roux, F. S., McLaren, M., Rosales-Guzman, C., Zhang, Y., Mouane, O., Hernandez-Aranda, R. I., Konrad, T. and Forbes, A. “Characterizing quantum channels with non-separable states of classical light,” Nat. Phys. 13, 397 (2017).
  20. Muller, A., Zbinden, H. and Gisin, N. “Underwater quantum coding,” Nature 378, 449 (1995).
  21. Buttler, W. T., Hughes, R. J., Kwiat, P. G., Lamoreaux, S. K., Luther, G. G., Morgan, G. L., Nordholt, J. E., Peterson, C. G. and Simmons, C. M. “Practical free-space quantum key distribution over 1 km,” Phys. Rev. Lett. 81, 3283 (1998).
  22. Yin, J., Cao, Y., Li, Y. H., Ren, J. G., Liao, S. K., Zhang, L., Cai, W. Q., Liu, W. Y., Li, B., Dai, H., Li, M., Huang, Y. M., Deng, L., Li, L., Zhang, Q., Liu, N. L., Chen, Y. A., Lu, C. Y., Shu, R., Peng, C. Z., Wang, J. Y. and Pan, J. W. “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
  23. Bechmann-Pasquinucci, H. and Tittel, W. “Quantum cryptography using larger alphabets,” Phys. Rev. A 61, 062308 (2000).
  24. Cerf, N. J., Bourennane, M., Karlsson, A. and Gisin, N. “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
  25. Molina-Terriza, G., Torres, J. P. and Torner, L. “Twisted photons,” Nature Physics 3, 305 (2007).
  26. Erhard, M., Fickler, R., Krenn, M. and Zeilinger, A. “Twisted photons: New quantum perspectives in high dimensions,” Light: Sci. and Appl. 7, 17146 (2018)
  27. Frédéric Bouchard, Felix Hufnagel, Dominik Koutný, Aazad Abbas, Alicia Sit, Khabat Heshami, Robert Fickler, and Ebrahim Karimi, “Quantum process tomography of a high-dimensional quantum communication channel,” Quantum 3, 138 (2019).
  28. M. D. Choi, “Completely positive linear maps on complex matrices,” Linear Alg. and Its Appl. 10, 285 (1975).
  29. A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefiniteness of operators,” Rep. Math. Phys. 3, 275 (1972).
  30. K. Kraus. States, “Effects, and Operations,” Springer-Verlag. Berlin. (1983).
  31. Daniel Greenbaum, “Introduction to Quantum Gate Set Tomography,” arXive preprints, arXiv:1509.02921 [quant-ph], (2015).
  32. Wood, C. J., Biamonte, J. D. and Cory, D. G. “Tensor networks and graphical calculus for open quantum systems,” Quantum Inf. Computat. 15, 0579–0811 (2015).
  33. S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Corcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, “Self-consistent quantum process tomography,” Phys. Rev. A 87, 062119 (2013).
  34. George C. Knee, Eliot Bolduc, Jonathan Leach, and Erik M. Gauger, “Quantum process tomography via completely positive and trace-preserving projection,” Phys. Rev. A 98, 062336 (2018).
  35. D’Ariano, G. M. and Lo Presti, P. “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001).
  36. Govia, L. C. G., Ribeill, G. J., Ristè, D., Ware, M. and Krovi, H. “Bootstrapping quantum process tomography via a perturbative ansatz,” Nat. Commun. 11, 1084 (2020).
  37. M. AbuGhanem and H. Eleuch, “Quantum tomography study of DB gate on an IBM’s quantum computer,” Available at SSRN (2023). http://dx.doi.org/10.2139/ssrn.4262095
  38. David P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschr. Phys. 48, 9-11 (2000).
  39. D. P. DiVincenzo, “Quantum computation,” Science 270, 5234 (1995).
  40. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74 20, 4091 (1995).
  41. T. Sleator and H. Weinfrter, “Realizable Universal Quantum Logic Gates,” Phys. Rev. Lett. 74 4087 (1995).
  42. M. AbuGhanem, A. Homid, and M. Abdel-Aty, “Cavity control as a new quantum algorithms implementation treatment,” Front. Phys. 13 1, 130303 (2018).
  43. D. R. Simon, “On the power of quantum computation,” SIAM J. Comput. 26(5), 1474–1483 (1997).
  44. Guifré Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computations,” Phys. Rev. Lett. 91, 147902 (2003).
  45. M. AbuGhanem, “Properties of some quantum computing models,” Master’s Thesis, Ain Shams University (2019).
  46. John M. Martinis, Kevin Osborne, “Superconducting Qubits and the Physics of Josephson Junctions,” arXive preprints, arXiv:cond-mat/0402415 [cond-mat.supr-con], (2004).
  47. J. Zhang, A. M. Souza, F. D. Brandao, and D. Suter, “Protected quantum computing: Interleaving gate operations with dynamical decoupling sequences,” Phys.Rev. Lett. 112, 050502 (2014).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com