Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Enhancing AutoEncoder for Occluded Image Classification (2402.06936v1)

Published 10 Feb 2024 in cs.CV

Abstract: Large occlusions result in a significant decline in image classification accuracy. During inference, diverse types of unseen occlusions introduce out-of-distribution data to the classification model, leading to accuracy dropping as low as 50%. As occlusions encompass spatially connected regions, conventional methods involving feature reconstruction are inadequate for enhancing classification performance. We introduce LEARN: Latent Enhancing feAture Reconstruction Network -- An auto-encoder based network that can be incorporated into the classification model before its classifier head without modifying the weights of classification model. In addition to reconstruction and classification losses, training of LEARN effectively combines intra- and inter-class losses calculated over its latent space -- which lead to improvement in recovering latent space of occluded data, while preserving its class-specific discriminative information. On the OccludedPASCAL3D+ dataset, the proposed LEARN outperforms standard classification models (VGG16 and ResNet-50) by a large margin and up to 2% over state-of-the-art methods. In cross-dataset testing, our method improves the average classification accuracy by more than 5% over the state-of-the-art methods. In every experiment, our model consistently maintains excellent accuracy on in-distribution data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ketan Kotwal (9 papers)
  2. Tanay Deshmukh (1 paper)
  3. Preeti Gopal (5 papers)

Summary

We haven't generated a summary for this paper yet.