Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a mixed local-nonlocal evolution equation with singular nonlinearity (2402.06926v1)

Published 10 Feb 2024 in math.AP

Abstract: We will prove several existence and regularity results for the mixed local-nonlocal parabolic equation of the form \begin{eqnarray} \begin{split} u_t-\Delta u+(-\Delta)s u&=\frac{f(x,t)}{u{\gamma(x,t)}} \text { in } \Omega_T:=\Omega \times(0, T), \ u&=0 \text { in }(\mathbb{R}n \backslash \Omega) \times(0, T), \ u(x, 0)&=u_0(x) \text { in } \Omega ; \end{split} \end{eqnarray} where \begin{equation*} (-\Delta )s u= c_{n,s}\operatorname{P.V.}\int_{\mathbb{R}n}\frac{u(x,t)-u(y,t)}{|x-y|{n+2s}} d y. \end{equation*} Under the assumptions that $\gamma$ is a positive continuous function on $\overline{\Omega}T$ and $\Omega$ is a bounded domain %of class $\mathcal{C}{1,1}$ with Lipschitz boundary in $\mathbb{R}{n}$, $n> 2$, $s\in(0,1)$, $0<T<+\infty$, $f\geq 0$, $u_0\geq 0$, $f$ and $u_0$ belongs to suitable Lebesgue spaces. Here $c{n,s}$ is a suitable normalization constant, and $\operatorname{P.V.}$ stands for Cauchy Principal Value.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com