A Survey of Four Precessing Waveform Models for Binary Black Hole Systems (2402.06781v1)
Abstract: Angular momentum and spin precession are expected to be generic features of a significant fraction of binary black hole systems. As such, it is essential to have waveform models that faithfully incorporate the effects of precession. Here, we assess how well the current state of the art models achieve this for waveform strains constructed only from the $\ell=2$ multipoles.Specifically, we conduct a survey on the faithfulness of the waveform models %(approximants) \texttt{SEOBNRv5PHM}, \texttt{TEOBResumS}, \texttt{IMRPhenomTPHM}, \texttt{IMRPhenomXPHM} to the numerical relativity (NR) surrogate \texttt{NRSur7dq4} and to NR waveforms from the \texttt{SXS} catalog. The former assessment involves systems with mass ratios up to six and dimensionless spins up to 0.8. The latter employs $317$ short and $23$ long \texttt{SXS} waveforms. For all cases, we use reference inclinations of zero and $90\circ$. We find that all four models become more faithful as the mass ratio approaches unity and when the merger-ringdown portion of the waveforms are excluded. We also uncover a correlation between the co-precessing $(2,\pm2)$ multipole mismatches and the overall strain mismatch. We additionally find that for high inclinations, precessing $(2,\pm 1)$ multipoles that are more faithful than their $(2,\pm2)$ counterparts, and comparable in magnitude, improve waveform faithfulness. As a side note, we show that use of uniformly-filled parameter spaces may lead to an overestimation of precessing model faithfulness. We conclude our survey with a parameter estimation study in which we inject two precessing \texttt{SXS} waveforms (at low and high masses) and recover the signal with \texttt{SEOBNRv5PHM}, \texttt{IMRPhenomTPHM} and \texttt{IMRPhenomXPHM}. As a bonus, we present preliminary multidimensional fits to model unfaithfulness for Bayesian model selection in parameter estimation studies.
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241102 (2016a), arXiv:1602.03840 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 93, 122003 (2016b), arXiv:1602.03839 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6, 041015 (2016d), arXiv:1606.04856 [gr-qc] .
- T. D. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6, 041014 (2016f), arXiv:1606.01210 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. D94, 064035 (2016g), arXiv:1606.01262 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241103 (2016h), arXiv:1606.04855 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Class. Quant. Grav. 34, 104002 (2017a), arXiv:1611.07531 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Annalen Phys. 529, 1600209 (2017b), arXiv:1608.01940 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 851, L35 (2017c), arXiv:1711.05578 [astro-ph.HE] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 141101 (2017d), arXiv:1709.09660 [gr-qc] .
- B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett. 118, 221101 (2017e), arXiv:1706.01812 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020a), arXiv:2006.12611 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 102, 043015 (2020b), arXiv:2004.08342 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 125, 101102 (2020c), arXiv:2009.01075 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017f), arXiv:1710.05832 [gr-qc] .
- B. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020d), arXiv:2001.01761 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 900, L13 (2020e), arXiv:2009.01190 [astro-ph.HE] .
- D. Williams, (2024), arXiv:2401.08709 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021c), arXiv:2010.14527 [gr-qc] .
- I. Mandel and A. Farmer, Phys. Rept. 955, 1 (2022), arXiv:1806.05820 [astro-ph.HE] .
- M. Mapelli, “Formation Channels of Single and Binary Stellar-Mass Black Holes,” (2021) arXiv:2106.00699 [astro-ph.HE] .
- L. E. Kidder, Phys.Rev. D52, 821 (1995), arXiv:gr-qc/9506022 [gr-qc] .
- C. Cutler and E. E. Flanagan, Phys.Rev. D49, 2658 (1994), arXiv:gr-qc/9402014 [gr-qc] .
- E. Poisson and C. M. Will, Phys.Rev. D52, 848 (1995), arXiv:gr-qc/9502040 [gr-qc] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 818, L22 (2016i), arXiv:1602.03846 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 241103 (2016j), arXiv:1606.04855 [gr-qc] .
- B. . P. . Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 851, L35 (2017g), arXiv:1711.05578 [astro-ph.HE] .
- T. Damour, Phys. Rev. D64, 124013 (2001), arXiv:gr-qc/0103018 .
- E. Racine, Phys. Rev. D78, 044021 (2008), arXiv:0803.1820 [gr-qc] .
- P. Ajith, Phys.Rev. D84, 084037 (2011), arXiv:1107.1267 [gr-qc] .
- J. Golomb and C. Talbot, (2022), arXiv:2210.12287 [astro-ph.HE] .
- C. Adamcewicz and E. Thrane, (2022), 10.1093/mnras/stac2961, arXiv:2208.03405 [astro-ph.HE] .
- L. Pompili et al., (2023), arXiv:2303.18039 [gr-qc] .
- E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4566 (1998a), arXiv:gr-qc/9710129 .
- M. Pürrer and C.-J. Haster, Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc] .
- J. Yoo et al., (2023), arXiv:2306.03148 [gr-qc] .
- A. Buonanno and T. Damour, Phys. Rev. D59, 084006 (1999), arXiv:gr-qc/9811091 .
- A. Buonanno and T. Damour, Phys. Rev. D62, 064015 (2000), arXiv:gr-qc/0001013 .
- A. Bohé et al., Phys. Rev. D95, 044028 (2017), arXiv:1611.03703 [gr-qc] .
- T. Hinderer et al., Phys. Rev. Lett. 116, 181101 (2016), arXiv:1602.00599 [gr-qc] .
- A. Matas et al., Phys. Rev. D 102, 043023 (2020), arXiv:2004.10001 [gr-qc] .
- S. Ossokine et al., Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
- T. Damour and A. Nagar, Phys.Rev. D90, 024054 (2014), arXiv:1406.0401 [gr-qc] .
- A. Nagar et al., Phys. Rev. D98, 104052 (2018), arXiv:1806.01772 [gr-qc] .
- D. Chiaramello and A. Nagar, Phys. Rev. D 101, 101501 (2020), arXiv:2001.11736 [gr-qc] .
- A. Nagar and P. Rettegno, (2021), arXiv:2108.02043 [gr-qc] .
- A. Nagar and S. Albanesi, Phys. Rev. D 106, 064049 (2022), arXiv:2207.14002 [gr-qc] .
- T. Andrade et al., (2023), arXiv:2307.08697 [gr-qc] .
- G. Pratten et al., Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
- “SEOBNRv5 code repository,” https://git.ligo.org/waveforms/software/pyseobnr.
- M. Colleoni et al., “in preparation,” (2024).
- E. Hamilton et al., (2023), arXiv:2303.05419 [gr-qc] .
- M. Boyle et al., Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
- C. Hoy, Phys. Rev. D 106, 083003 (2022), arXiv:2208.00106 [gr-qc] .
- P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
- R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 913, L7 (2021e), arXiv:2010.14533 [astro-ph.HE] .
- H. L. Iglesias et al., (2022), arXiv:2208.01766 [gr-qc] .
- J. Samsing and E. Ramirez-Ruiz, Astrophys. J. Lett. 840, L14 (2017), arXiv:1703.09703 [astro-ph.HE] .
- L. Gondán and B. Kocsis, Astrophys. J. 871, 178 (2019), arXiv:1809.00672 [astro-ph.HE] .
- S. Banerjee, Mon. Not. Roy. Astron. Soc. 481, 5123 (2018), arXiv:1805.06466 [astro-ph.HE] .
- E. Michaely and H. G. Perets, Mon. Not. Roy. Astron. Soc. 498, 4924 (2020), arXiv:2008.01094 [astro-ph.HE] .
- M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments, Oxford Master Series in Physics (Oxford University Press, 2007).
- J. J. Sakurai, Modern quantum mechanics; rev. ed. (Addison-Wesley, Reading, MA, 1994).
- D. Gerosa and M. Kesden, Phys. Rev. D 93, 124066 (2016), arXiv:1605.01067 [astro-ph.HE] .
- C. Kalaghatgi and M. Hannam, Phys. Rev. D 103, 024024 (2021), arXiv:2008.09957 [gr-qc] .
- M. Mould and D. Gerosa, Phys. Rev. D 105, 024076 (2022), arXiv:2110.05507 [astro-ph.HE] .
- J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- “Updated Advanced LIGO sensitivity design curve,” https://dcc.ligo.org/LIGO-T1800044/public (a).
- “L1 Calibrated Sensitivity Spectra Jan 04 2020,” https://dcc.ligo.org/LIGO-G2100675 (b).
- B. J. Owen, Phys. Rev. D53, 6749 (1996), arXiv:gr-qc/9511032 [gr-qc] .
- E. E. Flanagan and S. A. Hughes, Phys. Rev. D57, 4535 (1998b), arXiv:gr-qc/9701039 [gr-qc] .
- M. L. Waskom, Journal of Open Source Software 6, 3021 (2021).
- “SXS collaboration catalog tools,” https://github.com/sxs-collaboration/catalog_tools.
- LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, “LVK Algorithm Library - LALSuite,” Free software (GPL) (2018).
- M. Boyle and M. Scheel, “The sxs package,” (2023).
- M. Boyle, Phys. Rev. D87, 104006 (2013), arXiv:1302.2919 [gr-qc] .
- M. Boyle, Phys. Rev. D 93, 084031 (2016), arXiv:1509.00862 [gr-qc] .
- M. Boyle, D. Iozzo, and L. C. Stein, “moble/scri: v1.2,” (2020).
- “Noise curves used for Simulations in the update of the Observing Scenarios Paper,” https://dcc.ligo.org/LIGO-T2000012/public (2022).
- G. Ashton et al., Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
- I. M. Romero-Shaw et al., Mon. Not. Roy. Astron. Soc. 499, 3295 (2020b), arXiv:2006.00714 [astro-ph.IM] .
- “bilby_pipe,” https://lscsoft.docs.ligo.org/bilby_pipe/master/index.html (2020).
- J. Skilling, Bayesian Analysis 1, 833 (2006).
- J. S. Speagle, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
- S. Koposov, J. Speagle, K. Barbary, G. Ashton, E. Bennett, J. Buchner, C. Scheffler, B. Cook, C. Talbot, J. Guillochon, P. Cubillos, A. A. Ramos, B. Johnson, D. Lang, Ilya, M. Dartiailh, A. Nitz, A. McCluskey, and A. Archibald, “joshspeagle/dynesty: v2.1.3,” (2023).
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
- J. Lin, IEEE Transactions on Information Theory 37, 145 (1991).
- E. Ochsner and R. O’Shaughnessy, Phys. Rev. D 86, 104037 (2012), arXiv:1205.2287 [gr-qc] .
- E. Hamilton and M. Hannam, Phys. Rev. D 98, 084018 (2018), arXiv:1807.06331 [gr-qc] .
- Wikipedia contributors, “List of gravitational wave observations — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=List_of_gravitational_wave_observations&oldid=1188064092 (2023), [Online; accessed 5-December-2023].
- “Black Hole Perturbation Toolkit,” (bhptoolkit.org).
- C. Hoy and V. Raymond, SoftwareX 15, 100765 (2021), arXiv:2006.06639 [astro-ph.IM] .
- R. Abbott et al. (LIGO Scientific, Virgo), SoftwareX 13, 100658 (2021f), arXiv:1912.11716 [gr-qc] .
- C. R. Harris et al., Nature 585, 357 (2020), arXiv:2006.10256 [cs.MS] .
- J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
- The pandas development team, “pandas-dev/pandas: Pandas,” (2020).
- Wes McKinney, in Proceedings of the 9th Python in Science Conference, edited by Stéfan van der Walt and Jarrod Millman (2010) pp. 56 – 61.
- J. Veitch et al., Phys. Rev. D91, 042003 (2015), arXiv:1409.7215 [gr-qc] .