Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAE: Single Architecture Ensemble Neural Networks (2402.06580v2)

Published 9 Feb 2024 in cs.LG

Abstract: Ensembles of separate neural networks (NNs) have shown superior accuracy and confidence calibration over single NN across tasks. To improve the hardware efficiency of ensembles of separate NNs, recent methods create ensembles within a single network via adding early exits or considering multi input multi output approaches. However, it is unclear which of these methods is the most effective for a given task, needing a manual and separate search through each method. Our novel Single Architecture Ensemble (SAE) framework enables an automatic and joint search through the early exit and multi input multi output configurations and their previously unobserved in-between combinations. SAE consists of two parts: a scalable search space that generalises the previous methods and their in-between configurations, and an optimisation objective that allows learning the optimal configuration for a given task. Our image classification and regression experiments show that with SAE we can automatically find diverse configurations that fit the task, achieving competitive accuracy or confidence calibration to baselines while reducing the compute operations or parameter count by up to $1.5{\sim}3.7\times$.

Summary

We haven't generated a summary for this paper yet.