Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What is Hiding in Medicine's Dark Matter? Learning with Missing Data in Medical Practices (2402.06563v1)

Published 9 Feb 2024 in cs.LG, cs.AI, cs.CL, cs.HC, cs.IT, and math.IT

Abstract: Electronic patient records (EPRs) produce a wealth of data but contain significant missing information. Understanding and handling this missing data is an important part of clinical data analysis and if left unaddressed could result in bias in analysis and distortion in critical conclusions. Missing data may be linked to health care professional practice patterns and imputation of missing data can increase the validity of clinical decisions. This study focuses on statistical approaches for understanding and interpreting the missing data and machine learning based clinical data imputation using a single centre's paediatric emergency data and the data from UK's largest clinical audit for traumatic injury database (TARN). In the study of 56,961 data points related to initial vital signs and observations taken on children presenting to an Emergency Department, we have shown that missing data are likely to be non-random and how these are linked to health care professional practice patterns. We have then examined 79 TARN fields with missing values for 5,791 trauma cases. Singular Value Decomposition (SVD) and k-Nearest Neighbour (kNN) based missing data imputation methods are used and imputation results against the original dataset are compared and statistically tested. We have concluded that the 1NN imputer is the best imputation which indicates a usual pattern of clinical decision making: find the most similar patients and take their attributes as imputation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Neslihan Suzen (8 papers)
  2. Evgeny M. Mirkes (19 papers)
  3. Damian Roland (1 paper)
  4. Jeremy Levesley (19 papers)
  5. Alexander N. Gorban (49 papers)
  6. Tim J. Coats (1 paper)

Summary

We haven't generated a summary for this paper yet.