Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferring facade labels between point clouds with semantic octrees while considering change detection (2402.06531v1)

Published 9 Feb 2024 in cs.CV and cs.LG

Abstract: Point clouds and high-resolution 3D data have become increasingly important in various fields, including surveying, construction, and virtual reality. However, simply having this data is not enough; to extract useful information, semantic labeling is crucial. In this context, we propose a method to transfer annotations from a labeled to an unlabeled point cloud using an octree structure. The structure also analyses changes between the point clouds. Our experiments confirm that our method effectively transfers annotations while addressing changes. The primary contribution of this project is the development of the method for automatic label transfer between two different point clouds that represent the same real-world object. The proposed method can be of great importance for data-driven deep learning algorithms as it can also allow circumventing stochastic transfer learning by deterministic label transfer between datasets depicting the same objects.

Citations (2)

Summary

We haven't generated a summary for this paper yet.