Vertex-minor universal graphs for generating entangled quantum subsystems (2402.06260v3)
Abstract: We study the notion of $k$-stabilizer universal quantum state, that is, an $n$-qubit quantum state, such that it is possible to induce any stabilizer state on any $k$ qubits, by using only local operations and classical communications. These states generalize the notion of $k$-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and $k$-vertex-minor universal graphs. First, we demonstrate the existence of $k$-stabilizer universal graph states that are optimal in size with $n=\Theta(k2)$ qubits. We also provide parameters for which a random graph state on $\Theta(k2)$ qubits is $k$-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of $k$-stabilizer universal graph states on $n = O(k4)$ qubits. Both rely upon the incidence graph of the projective plane over a finite field $\mathbb{F}_q$. This provides a major improvement over the previously known explicit construction of $k$-pairable graph states with $n = O(2{3k})$, bringing forth a new and potentially powerful family of multipartite quantum resources.
- Fusion-based quantum computation. Nature Communications, 14(1):912, 2023. arXiv:2101.09310, doi:10.1038/s41467-023-36493-1.
- Generating kškitalic_k EPR-pairs from an nšnitalic_n-party resource state. Quantum Information Processing, 2023. arXiv:2211.06497.
- Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Information and Computation, 7(8), Nov 2007. arXiv:quant-ph/0404133, doi:10.26421/QIC7.8-1.
- The resource theory of tensor networks, 2023. arXiv:2307.07394.
- Small kškitalic_k-pairable states, 2023. arXiv:2309.09956.
- Asymptotic survival of genuine multipartite entanglement in noisy quantum networks depends on the topology. Physical Review Letters, 128(22), 2022. arXiv:2106.04634, doi:10.1103/physrevlett.128.220501.
- How to transform graph states using single-qubit operations: computational complexity and algorithms. Quantum Science and Technology, 5(4):045016, Sep 2020. arXiv:1805.05306, doi:10.1088/2058-9565/aba763.
- Transforming graph states to Bell-pairs is NP-Complete. Quantum, 4:348, Oct 2020. arXiv:1907.08019, doi:10.22331/q-2020-10-22-348.
- Transforming graph states using single-qubit operations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170325, 2018. arXiv:1805.05305, doi:10.1098/rsta.2017.0325.
- Graphical description of the action of local clifford transformations on graph states. Physical Review A, 69(2), Feb 2004. arXiv:quant-ph/0308151, doi:10.1103/physreva.69.022316.
- Quantum coordinated multi-point communication based on entanglement swapping. Quantum Information Processing, 16, Mar 2017. doi:10.1007/s11128-017-1558-2.
- Distributing graph states across quantum networks. In IEEE International Conference on Quantum Computing and Engineering (QCE), pages 324ā333, 2021. arXiv:2009.10888, doi:10.1109/QCE52317.2021.00049.
- Optimization of deterministic photonic graph state generation via local operations, 2024. arXiv:2401.00635.
- Daniel Gottesman. The heisenberg representation of quantum computers, 1998. arXiv:quant-ph/9807006.
- Quantum network routing and local complementation. npj Quantum Information, 5(1):1ā7, 2019. arXiv:1805.04559, doi:10.1038/s41534-019-0191-6.
- Entanglement in graph states and its applications, 2006. arXiv:quant-ph/0602096.
- Quantum internet: from medium access control to entanglement access control, 2022. arXiv:2205.11923.
- New protocols and lower bounds for quantum secret sharing with graph states. In Conference on Quantum Computation, Communication, and Cryptography, pages 1ā12. Springer, 2012. arXiv:1109.1487.
- Vertex-minors of graphs: A survey, Oct 2023. URL: https://dimag.ibs.re.kr/home/sangil/wp-content/uploads/sites/2/2023/10/2023vertexminors-survey-revised.pdf.
- Graph-theoretical optimization of fusion-based graph state generation. Quantum, 7:1212, Dec 2023. arXiv:2304.11988, doi:10.22331/q-2023-12-20-1212.
- Experimental entanglement of six photons in graph states. Nature physics, 3(2):91ā95, 2007.
- Graph states for quantum secret sharing. Physical Review A, 78:042309, 2008. arXiv:0808.1532, doi:10.1103/PhysRevA.78.042309.
- Distributing graph states over arbitrary quantum networks. Physical Review A, 100:052333, Nov 2019. arXiv:1811.05445, doi:10.1103/PhysRevA.100.052333.
- Optimized quantum networks. Quantum, 7:919, Feb 2023. arXiv:2107.10275, doi:10.22331/q-2023-02-09-919.
- Routing entanglement in the quantum internet. npj Quantum Information, 5(1):1ā9, 2019. arXiv:1708.07142, doi:10.1038/s41534-019-0139-x.
- Shortcuts to quantum network routing, 2016. arXiv:1610.05238.
- Entanglement distillation from GreenbergerāHorneāZeilinger shares. Communications in Mathematical Physics, 352:621ā627, 2017. arXiv:1603.03964.