Papers
Topics
Authors
Recent
Search
2000 character limit reached

A generalized formulation for gradient schemes in unstructured finite volume method

Published 9 Feb 2024 in math.NA, cs.NA, math-ph, math.MP, and physics.flu-dyn | (2402.06199v1)

Abstract: We present a generic framework for gradient reconstruction schemes on unstructured meshes using the notion of a dyadic sum-vector product. The proposed formulation reconstructs centroidal gradients of a scalar from its directional derivatives along specific directions in a suitably defined neighbourhood. We show that existing gradient reconstruction schemes can be encompassed within this framework by a suitable choice of the geometric vectors that define the dyadic sum tensor. The proposed framework also allows us to re-interpret certain hybrid schemes, which might not be derivable through traditional routes. Additionally, a generalization of flexible gradient schemes is proposed that can be employed to enhance the robustness of consistent gradient schemes without compromising on the accuracy of the computed gradients.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Moukalled, F., Mangani, L., Darwish, M., et al.: The Finite Volume Method in Computational Fluid Dynamics. Springer, New York (2016) Mavriplis [2003] Mavriplis, D.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. In: 16th AIAA Computational Fluid Dynamics Conference, p. 3986 (2003) Shima et al. [2013] Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mavriplis, D.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. In: 16th AIAA Computational Fluid Dynamics Conference, p. 3986 (2003) Shima et al. [2013] Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  2. Mavriplis, D.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. In: 16th AIAA Computational Fluid Dynamics Conference, p. 3986 (2003) Shima et al. [2013] Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  3. Shima, E., Kitamura, K., Haga, T.: Green–gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedra unstructured grids. AIAA journal 51(11), 2740–2747 (2013) Diskin and Thomas [2008] Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  4. Diskin, B., Thomas, J.: Accuracy of gradient reconstruction on grids with high aspect ratio. NIA report 12, 2008 (2008) Wang et al. [2017] Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  5. Wang, Q., Ren, Y.-X., Pan, J., Li, W.: Compact high order finite volume method on unstructured grids iii: Variational reconstruction. Journal of Computational physics 337, 1–26 (2017) Nishikawa [2018] Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  6. Nishikawa, H.: From hyperbolic diffusion scheme to gradient method: Implicit green–gauss gradients for unstructured grids. Journal of Computational Physics 372, 126–160 (2018) Oxtoby et al. [2019] Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  7. Oxtoby, O., Syrakos, A., Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A family of first-order accurate gradient schemes for finite volume methods (2019) Syrakos et al. [2023] Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  8. Syrakos, A., Oxtoby, O., de Villiers, E., Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: A unification of least-squares and green–gauss gradients under a common projection-based gradient reconstruction framework. Mathematics and Computers in Simulation 205, 108–141 (2023) https://doi.org/10.1016/j.matcom.2022.09.008 Deka et al. [2018] Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  9. Deka, M., Brahmachary, S., Thirumalaisamy, R., Dalal, A., Natarajan, G.: A new green–gauss reconstruction on unstructured meshes. part i: Gradient reconstruction. Journal of Computational Physics (2018) Feng [2020] Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  10. Feng, X.: Cell-centered finite volume methods. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere, pp. 125–337. Springer, ??? (2020) Deka et al. [2023] Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  11. Deka, M., Assam, A., Natarajan, G.: A least squares perspective of green–gauss gradient schemes. Physics of Fluids 35(3) (2023) Nishikawa [2021] Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  12. Nishikawa, H.: A flexible gradient method for unstructured-grid solvers. International Journal for Numerical Methods in Fluids 93(6), 2015–2021 (2021) Sozer et al. [2014] Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  13. Sozer, E., Brehm, C., Kiris, C.C.: Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered cfd solvers. In: 52nd Aerospace Sciences Meeting, p. 1440 (2014) Syrakos et al. [2017] Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  14. Syrakos, A., Varchanis, S., Dimakopoulos, Y., Goulas, A., Tsamopoulos, J.: A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods. Physics of Fluids 29(12), 127103 (2017) Diskin and Thomas [2011] Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  15. Diskin, B., Thomas, J.L.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: inviscid fluxes. AIAA journal 49(4), 836–854 (2011) Jasak [1996] Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  16. Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London) (1996) Mahesh et al. [2004] Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  17. Mahesh, K., Constantinescu, G., Moin, P.: A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics 197(1), 215–240 (2004) Ghods and Herrmann [2013] Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  18. Ghods, S., Herrmann, M.: A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using level set methods. Physica Scripta 2013(T155), 014050 (2013) Manik et al. [2018] Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  19. Manik, J., Dalal, A., Natarajan, G.: A generic algorithm for three-dimensional multiphase flows on unstructured meshes. International Journal of Multiphase Flow 106, 228–242 (2018) Weller [2014] Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  20. Weller, H.: Non-orthogonal version of the arbitrary polygonal c-grid and a new diamond grid. Geoscientific Model Development 7(3), 779–797 (2014) Aguerre et al. [2018] Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018) Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)
  21. Aguerre, H.J., Pairetti, C.I., Venier, C.M., Damián, S.M., Nigro, N.M.: An oscillation-free flow solver based on flux reconstruction. Journal of Computational Physics 365, 135–148 (2018)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.