Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAS-SLAM: A Visual SLAM System for Planar Ambiguous Scenes (2402.06131v1)

Published 9 Feb 2024 in cs.RO and cs.CV

Abstract: Visual SLAM (Simultaneous Localization and Mapping) based on planar features has found widespread applications in fields such as environmental structure perception and augmented reality. However, current research faces challenges in accurately localizing and mapping in planar ambiguous scenes, primarily due to the poor accuracy of the employed planar features and data association methods. In this paper, we propose a visual SLAM system based on planar features designed for planar ambiguous scenes, encompassing planar processing, data association, and multi-constraint factor graph optimization. We introduce a planar processing strategy that integrates semantic information with planar features, extracting the edges and vertices of planes to be utilized in tasks such as plane selection, data association, and pose optimization. Next, we present an integrated data association strategy that combines plane parameters, semantic information, projection IoU (Intersection over Union), and non-parametric tests, achieving accurate and robust plane data association in planar ambiguous scenes. Finally, we design a set of multi-constraint factor graphs for camera pose optimization. Qualitative and quantitative experiments conducted on publicly available datasets demonstrate that our proposed system competes effectively in both accuracy and robustness in terms of map construction and camera localization compared to state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. W. Yuan, Z. Li, and C.-Y. Su, “Multisensor-based navigation and control of a mobile service robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 4, pp. 2624–2634, 2019.
  2. K.-W. Chiang, G.-J. Tsai, H. Chang, C. Joly, and N. Ei-Sheimy, “Seamless navigation and mapping using an ins/gnss/grid-based slam semi-tightly coupled integration scheme,” Information Fusion, vol. 50, pp. 181–196, 2019.
  3. M. Henein, J. Zhang, R. Mahony, and V. Ila, “Dynamic slam: The need for speed,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 2123–2129.
  4. D. Fernandes, A. Silva, R. Névoa, C. Simões, D. Gonzalez, M. Guevara, P. Novais, J. Monteiro, and P. Melo-Pinto, “Point-cloud based 3d object detection and classification methods for self-driving applications: A survey and taxonomy,” Information Fusion, vol. 68, pp. 161–191, 2021.
  5. L. Jinyu, Y. Bangbang, C. Danpeng, W. Nan, Z. Guofeng, and B. Hujun, “Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality,” Virtual Reality & Intelligent Hardware, vol. 1, no. 4, pp. 386–410, 2019.
  6. Y. Wu, Y. Zhang, D. Zhu, Z. Deng, W. Sun, X. Chen, and J. Zhang, “An object slam framework for association, mapping, and high-level tasks,” IEEE Transactions on Robotics, vol. 39, no. 4, pp. 2912–2932, 2023.
  7. C. Park, H. Cho, S. Park, S.-U. Jung, and S. Lee, “Strategy for creating ar applications in static and dynamic environments using slam-andmarker detector-based tracking.” CMES-Computer Modeling in Engineering & Sciences, vol. 131, no. 1, 2022.
  8. A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam: Real-time single camera slam,” IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.
  9. G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in 2007 6th IEEE and ACM international symposium on mixed and augmented reality.   IEEE, 2007, pp. 225–234.
  10. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
  11. R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
  12. S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: A versatile visual slam framework,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 2292–2295.
  13. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.
  14. X. Zhang, W. Wang, X. Qi, Z. Liao, and R. Wei, “Point-plane slam using supposed planes for indoor environments,” Sensors, vol. 19, no. 17, p. 3795, 2019.
  15. X. Li, Y. Li, E. P. Örnek, J. Lin, and F. Tombari, “Co-planar parametrization for stereo-slam and visual-inertial odometry,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6972–6979, 2020.
  16. X. Wang, M. Christie, and E. Marchand, “Tt-slam: Dense monocular slam for planar environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 690–11 696.
  17. F. Shu, J. Wang, A. Pagani, and D. Stricker, “Structure plp-slam: Efficient sparse mapping and localization using point, line and plane for monocular, rgb-d and stereo cameras,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 2105–2112.
  18. C. Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in organized point clouds using agglomerative hierarchical clustering,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 6218–6225.
  19. N. Huang, J. Chen, and Y. Miao, “Optimization for rgb-d slam based on plane geometrical constraint,” in 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).   IEEE, 2019, pp. 326–331.
  20. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g 2 o: A general framework for graph optimization,” in 2011 IEEE International Conference on Robotics and Automation.   IEEE, 2011, pp. 3607–3613.
  21. F. Shu, Y. Xie, J. Rambach, A. Pagani, and D. Stricker, “Visual slam with graph-cut optimized multi-plane reconstruction,” in 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).   IEEE, 2021, pp. 165–170.
  22. D. Chen, S. Wang, W. Xie, S. Zhai, N. Wang, H. Bao, and G. Zhang, “Vip-slam: An efficient tightly-coupled rgb-d visual inertial planar slam,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 5615–5621.
  23. P. Kim, B. Coltin, and H. J. Kim, “Linear rgb-d slam for planar environments,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 333–348.
  24. K. Joo, P. Kim, M. Hebert, I. S. Kweon, and H. J. Kim, “Linear rgb-d slam for structured environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8403–8419, 2021.
  25. Y. Li, N. Brasch, Y. Wang, N. Navab, and F. Tombari, “Structure-slam: Low-drift monocular slam in indoor environments,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6583–6590, 2020.
  26. Y. Li, R. Yunus, N. Brasch, N. Navab, and F. Tombari, “Rgb-d slam with structural regularities,” in 2021 IEEE international conference on Robotics and automation (ICRA).   IEEE, 2021, pp. 11 581–11 587.
  27. R. Yunus, Y. Li, and F. Tombari, “Manhattanslam: Robust planar tracking and mapping leveraging mixture of manhattan frames,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6687–6693.
  28. L. Ma, C. Kerl, J. Stückler, and D. Cremers, “Cpa-slam: Consistent plane-model alignment for direct rgb-d slam,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 1285–1291.
  29. L. Zhang, D. Chen, and W. Liu, “Point-plane slam based on line-based plane segmentation approach,” in 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2016, pp. 1287–1292.
  30. S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up slam: Semantic monocular plane slam for low-texture environments,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 1222–1229.
  31. M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based dense planar slam,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   Ieee, 2017, pp. 5110–5117.
  32. S. Yang and S. Scherer, “Monocular object and plane slam in structured environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3145–3152, 2019.
  33. X. Zhang, W. Wang, X. Qi, and Z. Liao, “Stereo plane slam based on intersecting lines,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 6566–6572.
  34. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021.
  35. Y. Wu, Y. Zhang, D. Zhu, Y. Feng, S. Coleman, and D. Kerr, “Eao-slam: Monocular semi-dense object slam based on ensemble data association,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4966–4973.
  36. F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in Statistics: Methodology and Distribution.   Springer, 1992, pp. 196–202.
  37. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2012, pp. 573–580.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xinggang Hu (6 papers)
  2. Yanmin Wu (20 papers)
  3. Mingyuan Zhao (2 papers)
  4. Linghao Yang (4 papers)
  5. Xiangkui Zhang (2 papers)
  6. Xiangyang Ji (159 papers)