Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Node-wise Propagation for Large-scale Graph Learning (2402.06128v1)

Published 9 Feb 2024 in cs.LG, cs.AI, and cs.SI

Abstract: Scalable graph neural networks (GNNs) have emerged as a promising technique, which exhibits superior predictive performance and high running efficiency across numerous large-scale graph-based web applications. However, (i) Most scalable GNNs tend to treat all nodes in graphs with the same propagation rules, neglecting their topological uniqueness; (ii) Existing node-wise propagation optimization strategies are insufficient on web-scale graphs with intricate topology, where a full portrayal of nodes' local properties is required. Intuitively, different nodes in web-scale graphs possess distinct topological roles, and therefore propagating them indiscriminately or neglect local contexts may compromise the quality of node representations. This intricate topology in web-scale graphs cannot be matched by small-scale scenarios. To address the above issues, we propose \textbf{A}daptive \textbf{T}opology-aware \textbf{P}ropagation (ATP), which reduces potential high-bias propagation and extracts structural patterns of each node in a scalable manner to improve running efficiency and predictive performance. Remarkably, ATP is crafted to be a plug-and-play node-wise propagation optimization strategy, allowing for offline execution independent of the graph learning process in a new perspective. Therefore, this approach can be seamlessly integrated into most scalable GNNs while remain orthogonal to existing node-wise propagation optimization strategies. Extensive experiments on 12 datasets, including the most representative large-scale ogbn-papers100M, have demonstrated the effectiveness of ATP. Specifically, ATP has proven to be efficient in improving the performance of prevalent scalable GNNs for semi-supervised node classification while addressing redundant computational costs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets