Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neumann-Neumann type domain decomposition of elliptic problems on metric graphs (2402.05707v2)

Published 8 Feb 2024 in math.NA and cs.NA

Abstract: In this paper we develop a Neumann-Neumann type domain decomposition method for elliptic problems on metric graphs. We describe the iteration in the continuous and discrete setting and rewrite the latter as a preconditioner for the Schur complement system. Then we formulate the discrete iteration as an abstract additive Schwarz iteration and prove that it convergences to the finite element solution with a rate that is independent of the finite element mesh size. We show that the condition number of the Schur complement is also independent of the finite element mesh size. We provide an implementation and test it on various examples of interest and compare it to other preconditioners.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. S. Alexander. Superconductivity of networks. a percolation approach to the effects of disorder. Physical Review B, 27(3):1541–1557, 1983.
  2. M. Arioli and M. Benzi. A finite element method for quantum graphs. IMA Journal of Numerical Analysis, 3:1119–1163, 2017.
  3. Controllability for the wave equation on graph with cycle and delta-prime vertex conditions. Evolution Equations and Control Theory, 12(6):1542–1558, 2023.
  4. S. Avdonin and Y. Zhao. Exact controllability of the 1-d wave equation on finite metric tree graphs. Applied Mathematics & Optimization, 83(3):2303–2326, 2019.
  5. I. Babuska. Über schwarzsche algorithmen in partielle differentialgleichungen der mathematischen physik. ZAMM, 37(7/8):243–245, 1957.
  6. The hierarchical basis multigrid method. Numerische Mathematik, 52(4):427–458, 1988.
  7. Regularity and numerical approximation of fractional elliptic differential equations on compact metric graphs. Mathematics of Computation, December 2023.
  8. Variational formulation and algorithm for trace operator in domain decomposition calculations. In Second international symposium on domain decomposition methods for partial differential equations. SIAM, 1989.
  9. Analysis and test of a local domain decomposition preconditioner. In Fourth international symposium on domain decomposition methods for partial differential equations. SIAM, 1991.
  10. A. Brandt. Multilevel adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138):333–390, 1977.
  11. The Mathematical Theory of Finite Element Methods. Springer New York, 2007.
  12. A Multigrid Tutorial, Second Edition. SIAM, second edition, 2000.
  13. Domain decomposition algorithms. Acta Numerica, 3:61–143, 1994.
  14. Modelling acute myeloid leukaemia in a continuum of differentiation states. Letters in Biomathematics, 5:69–98, 2018.
  15. Solving elliptic problems by domain decomposition methods with applications, page 395–426. Elsevier, 1984.
  16. M. Dryja and O. Widlund. An additive variant of the Schwarz alternating method for the case of many subregions. Technical Report 339, Ultracomputer Note 131. Department of Computer Science, Courant Institute, 1987.
  17. M. Dryja and O. B. Widlund. Schwarz methods of neumann-neumann type for three-dimensional elliptic finite element problems. Communications on Pure and Applied Mathematics, 48(2):121–155, 1995.
  18. C. Farhat and F. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6):1205–1227, 1991.
  19. Strong localization of classical waves: A numerical study. Europhysics Letters (EPL), 3(4):497–502, 1987.
  20. Localization of classical waves in a simple model. Physical Review A, 40(7):4011–4018, 1989.
  21. G. Greiner. Perturbing the boundary-conditions of a generator. Houston Journal of mathematics, 13(2):213–229, 1987.
  22. Solution of elliptic partial differential equations by an optimization-based domain decomposition method. Applied Mathematics and Computation, 113(2–3):111–139, 2000.
  23. G. Kallianpur and R. Wolpert. Infinite dimensional stochastic differential equation models for spatially distributed neurons. Appl. Math. Optim., 12:125–172, 1984.
  24. A. Klawonn and O. Widlund. Feti and neumann-neumann iterative substructuring methods: Connections and new results. Communications on Pure and Applied Mathematics, 54(1):57–90, 2001.
  25. E. Korotyaev and I. Lobanov. Schrödinger operators on zigzag nanotubes. Annales Henri Poincaré, 8(6):1151–1176, 2007.
  26. J. E. Lagnese and G. Leugering. Domain Decomposition Methods in Optimal Control of Partial Differential Equations. Birkhäuser Basel, 2004.
  27. G. Leugering. Dynamic domain decomposition of optimal control problems for networks of euler-bernoulli beams. ESAIM: Proceedings, 4:223–233, 1998.
  28. G. Leugering. Domain decomposition of optimal control problems for dynamic networks of elastic strings. Computational Optimization and Applications, 16(1):5–27, 2000.
  29. G. Leugering. Domain decomposition of an optimal control problem for semi-linear elliptic equations on metric graphs with application to gas networks. Applied Mathematics, 08(08):1074–1099, 2017.
  30. G. Leugering. Nonoverlapping domain decomposition and virtual controls for optimal control problems of p-type on metric graphs, page 217–260. Elsevier, 2023.
  31. J. L. Lions. Some methods in the mathematical analysis of systems and their control. Taylor and Francis, 1981.
  32. P.-L. Lions. On the Schwarz alternating method. I. In First international symposium on domain decomposition methods for partial differential equations. SIAM, 1988.
  33. P.-L. Lions. On the Schwarz alternating method. II. In Second international symposium on domain decomposition methods for partial differential equations. SIAM, 1989.
  34. T. P. A. Mathew. Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer Berlin Heidelberg, 2008.
  35. Optimal control problems driven by time-fractional diffusion equations on metric graphs: Optimality system and finite difference approximation. SIAM Journal on Control and Optimization, 59(6):4216–4242, 2021.
  36. D. Morgenstern. Begründung des alternierenden verfahrens durch otrhogonalprojektion. ZAMM, 36:7–8, 1956.
  37. D. Mugnolo. Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2(1):55–79, 2007.
  38. D. Mugnolo. Semigroup Methods for Evolution Equations on Networks. Springer International Publishing, 2014.
  39. H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2. Springer Berlin Heidelberg, 1870. First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 1870.
  40. Domain decomposition. Cambridge University Press, 1996.
  41. S. L. Sobolev. L’algorithme de schwarz dans la théorie de l’elasticité. Comptes rendus doklady de l’académie des sciences de l’URSS, 4(13):243–246, 1936.
  42. M. Stoll and M. Winkler. Optimal dirichlet control of partial differential equations on networks. ETNA - Electronic Transactions on Numerical Analysis, 54:392–419, 2021.
  43. Domain decomposition methods for large linearly elliptic three-dimensional problems. Journal of Computational and Applied Mathematics, 34(1):93–117, February 1991.
  44. A. Toselli and O. B. Widlund. Domain Decomposition Methods — Algorithms and Theory. Springer Berlin Heidelberg, 2005.
  45. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34(4):581–613, 1992.

Summary

We haven't generated a summary for this paper yet.