Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Deep Model-Based Reinforcement Learning (2402.05525v2)

Published 8 Feb 2024 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: We address private deep offline reinforcement learning (RL), where the goal is to train a policy on standard control tasks that is differentially private (DP) with respect to individual trajectories in the dataset. To achieve this, we introduce PriMORL, a model-based RL algorithm with formal differential privacy guarantees. PriMORL first learns an ensemble of trajectory-level DP models of the environment from offline data. It then optimizes a policy on the penalized private model, without any further interaction with the system or access to the dataset. In addition to offering strong theoretical foundations, we demonstrate empirically that PriMORL enables the training of private RL agents on offline continuous control tasks with deep function approximations, whereas current methods are limited to simpler tabular and linear Markov Decision Processes (MDPs). We furthermore outline the trade-offs involved in achieving privacy in this setting.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com