Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SeAr PC: Sensitivity Enhanced Arbitrary Polynomial Chaos (2402.05507v1)

Published 8 Feb 2024 in math.NA and cs.NA

Abstract: This paper presents a method for performing Uncertainty Quantification in high-dimensional uncertain spaces by combining arbitrary polynomial chaos with a recently proposed scheme for sensitivity enhancement (1). Including available sensitivity information offers a way to mitigate the curse of dimensionality in Polynomial Chaos Expansions (PCEs). Coupling the sensitivity enhancement to arbitrary Polynomial Chaos allows the formulation to be extended to a wide range of stochastic processes, including multi-modal, fat-tailed, and truncated probability distributions. In so doing, this work addresses two of the barriers to widespread industrial application of PCEs. The method is demonstrated for a number of synthetic test cases, including an uncertainty analysis of a Finite Element structure, determined using Topology Optimisation, with 306 uncertain inputs. We demonstrate that by exploiting sensitivity information, PCEs can feasibly be applied to such problems and through the Sobol sensitivity indices, can allow a designer to easily visualise the spatial distribution of the contributions to uncertainty in the structure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.