Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Convex Simple Bilevel Optimization with a Bisection Method (2402.05415v2)

Published 8 Feb 2024 in math.OC

Abstract: This paper studies a class of simple bilevel optimization problems where we minimize a composite convex function at the upper-level subject to a composite convex lower-level problem. Existing methods either provide asymptotic guarantees for the upper-level objective or attain slow sublinear convergence rates. We propose a bisection algorithm to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. In each iteration, the binary search narrows the interval by assessing inequality system feasibility. Under mild conditions, the total operation complexity of our method is ${\tilde {\mathcal{O}}}\left(\max{\sqrt{L_{f_1}/\epsilon_f},\sqrt{L_{g_1}/\epsilon_g} } \right)$. Here, a unit operation can be a function evaluation, gradient evaluation, or the invocation of the proximal mapping, $L_{f_1}$ and $L_{g_1}$ are the Lipschitz constants of the upper- and lower-level objectives' smooth components, and ${\tilde {\mathcal{O}}}$ hides logarithmic terms. Our approach achieves a near-optimal rate, matching the optimal rate in unconstrained smooth or composite convex optimization when disregarding logarithmic terms. Numerical experiments demonstrate the effectiveness of our method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.