Dynamic Geometric Connectivity in the Plane with Constant Query Time (2402.05357v2)
Abstract: We present the first fully dynamic connectivity data structures for geometric intersection graphs achieving constant query time and sublinear amortized update time for most types of geometric objects in 2D. Our data structures can answer connectivity queries between two objects, as well as "global" connectivity queries (e.g., deciding whether the entire graph is connected). Previously, the data structure by Afshani and Chan (ESA'06) achieved such bounds only in the special case of axis-aligned line segments or rectangles but did not work for arbitrary line segments or disks, whereas the data structures by Chan, P\u{a}tra\c{s}cu and Roditty (FOCS'08) worked for more general classes of geometric objects but required $n{\Omega(1)}$ query time and could not handle global connectivity queries. Specifically, we obtain new data structures with $O(1)$ query time and amortized update time near $n{4/5}$, $n{7/8}$, and $n{20/21}$ for axis-aligned line segments, disks, and arbitrary line segments respectively. Besides greatly reducing the query time, our data structures also improve the previous update times for axis-aligned line segments by Afshani and Chan (from near $n{10/11}$ to $n{4/5}$) and for disks by Chan, P\u{a}tra\c{s}cu, and Roditty (from near $n{20/21}$ to $n{7/8}$).
- Popular conjectures imply strong lower bounds for dynamic problems. In Proc. 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 434–443, 2014. doi:10.1109/FOCS.2014.53.
- Dynamic connectivity for axis-parallel rectangles. Algorithmica, 53(4):474–487, 2009. Preliminary version in ESA’06. doi:10.1007/s00453-008-9234-7.
- Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput., 29(3):912–953, 1999. Preliminary version in SoCG’95. doi:10.1137/S0097539795295936.
- Decomposable searching problems I: static-to-dynamic transformation. J. Algorithms, 1(4):301–358, 1980. doi:10.1016/0196-6774(80)90015-2.
- Timothy M. Chan. Geometric applications of a randomized optimization technique. Discret. Comput. Geom., 22(4):547–567, 1999. doi:10.1007/PL00009478.
- Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM J. Comput., 32(3):700–716, 2003. doi:10.1137/S0097539702404389.
- Timothy M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–694, 2006. Preliminary version in STOC’02. doi:10.1137/S009753970343912X.
- Timothy M. Chan. Near-optimal randomized algorithms for selection in totally monotone matrices. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1483–1495, 2021. doi:10.1137/1.9781611976465.89.
- Linear-space data structures for range mode query in arrays. Theory Comput. Syst., 55(4):719–741, 2014. URL: https://doi.org/10.1007/s00224-013-9455-2, doi:10.1007/S00224-013-9455-2.
- Dynamic connectivity: Connecting to networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. Preliminary version in FOCS’08. doi:10.1137/090751670.
- Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 190–210, 2022. doi:10.1137/1.9781611977073.10.
- A deterministic algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. In Proc. 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 1158–1167, 2020. doi:10.1109/FOCS46700.2020.00111.
- Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.worldcat.org/oclc/227584184.
- On the intersection of orthogonal objects. Inf. Process. Lett., 13(4/5):177–181, 1981. doi:10.1016/0020-0190(81)90053-3.
- Dynamically switching vertices in planar graphs. Algorithmica, 28(1):76–103, 2000. URL: https://doi.org/10.1007/s004530010032, doi:10.1007/S004530010032.
- Computational geometry: Generalized (or colored) intersection searching. In Handbook of Data Structures and Applications, pages 1043–1058. Chapman and Hall/CRC, 2018. URL: https://www.csa.iisc.ac.in/~saladi/Papers/ds2-handbook.pdf.
- Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.320215.
- Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.
- Fully dynamic connectivity in O(logn(loglogn)2)𝑂𝑛superscript𝑛2O(\log n(\log\log n)^{2})italic_O ( roman_log italic_n ( roman_log roman_log italic_n ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) amortized expected time. TheoretiCS, 2, 2023. doi:10.46298/THEORETICS.23.6.
- Ce Jin and Yinzhan Xu. Tight dynamic problem lower bounds from generalized BMM and OMv. In Proc. 54th Annual ACM Symposium on Theory of Computing (STOC), pages 1515–1528, 2022. doi:10.1145/3519935.3520036.
- Dynamic connectivity in disk graphs. In Proc. 38th International Symposium on Computational Geometry (SoCG), pages 49:1–49:17, 2022. doi:10.4230/LIPICS.SOCG.2022.49.
- Insertion-only dynamic connectivity in general disk graphs. In Proc. SIAM Symposium on Simplicity of Algorithms (SOSA), pages 299–305, 2024. doi:10.1137/1.9781611977936.27.
- Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applications. Discret. Comput. Geom., 64(3):838–904, 2020. Preliminary version in SODA’17. doi:10.1007/s00454-020-00243-7.
- Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. J. ACM, 51(5):699–730, 2004. Preliminary verion in FOCS’01. doi:10.1145/1017460.1017461.
- D. T. Lee and Robert L. (Scot) Drysdale III. Generalization of Voronoi diagrams in the plane. SIAM J. Comput., 10(1):73–87, 1981. doi:10.1137/0210006.
- James R. Lee. Separators in region intersection graphs. In Proc. 8th Innovations in Theoretical Computer Science Conference (ITCS), pages 1:1–1:8, 2017. doi:10.4230/LIPICS.ITCS.2017.1.
- Jirí Matoušek. Efficient partition trees. Discret. Comput. Geom., 8:315–334, 1992. Preliminary version in SoCG’91. doi:10.1007/BF02293051.
- Jirí Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics. Springer, 2002.
- Planning for fast connectivity updates. In Proc. 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 263–271, 2007. doi:10.1109/FOCS.2007.54.
- Geometric separator theorems & applications. In Proc. 39th Annual Symposium on Foundations of Computer Science (FOCS), pages 232–243, 1998. doi:10.1109/SFCS.1998.743449.
- Mikkel Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243, 1999. Preliminary version in SODA’97. URL: https://doi.org/10.1006/jagm.1999.1033, doi:10.1006/JAGM.1999.1033.