Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hennings TQFTs for Cobordisms Decorated With Cohomology Classes (2402.05103v1)

Published 7 Feb 2024 in math.GT and math.QA

Abstract: Starting from an abelian group $G$ and a factorizable ribbon Hopf $G$-bialgebra $H$, we construct a TQFT $J_H$ for connected framed cobordisms between connected surfaces with connected boundary decorated with cohomology classes with coefficients in $G$. When restricted to the subcategory of cobordisms with trivial decorations, our functor recovers a special case of Kerler-Lyubashenko TQFTs, namely those associated with factorizable ribbon Hopf algebras. Our result is inspired by the work of Blanchet-Costantino-Geer-Patureau, who constructed non-semisimple TQFTs for admissible decorated cobordisms using the unrolled quantum group of $\mathfrak{sl}_2$, and by that of Geer-Ha-Patureau, who reformulated the underlying invariants of admissible decorated $3$-manifolds using ribbon Hopf $G$-coalgebras. Our work represents the first step towards a homological model for non-semisimple TQFTs decorated with cohomology classes that appears in a conjecture by the first two authors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com