Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric model for semilinear locally gentle algebras (2402.04947v1)

Published 7 Feb 2024 in math.RT

Abstract: We consider certain generalizations of gentle algebras that we call semilinear locally gentle algebras. These rings are examples of semilinear clannish algebras as introduced by the second author and Crawley-Boevey. We generalise the notion of a nodal algebra from work of Burban and Drozd and prove that semilinear gentle algebras are nodal by adapting a theorem of Zembyk. We also provide a geometric realization of Zembyk's proof, which involves cutting the surface into simpler pieces in order to endow our locally gentle algebra with a semilinear structure. We then consider this surface glued back together, with the seams in place, and use it to give a geometric model for the finite-dimensional modules over the semilinear locally gentle algebra.

Summary

We haven't generated a summary for this paper yet.